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We propose a method to dynamically generate and control the flow of spin-entangled electrons, each
belonging to a spin singlet, by means of adiabatic quantum pumping. The pumping cycle functions by
periodic time variation of localized two-body interactions. We develop a generalized approach to adiabatic
quantum pumping as traditional methods based on a scattering matrix in one dimension cannot be applied
here. We specifically compute the flow of spin-entangled electrons within a Hubbard-like model of
quantum dots, discuss possible implementations, and identify parameters that can be used to control the
singlet flow.
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Entanglement is one of the most intriguing features that
distinguish the quantum world from the classical. In recent
years [1], potential applications in quantum information
and computation have stimulated renewed vigor in the
study of entangled states. Since Bohm’s [2] reformulation
of the Einstein-Podolsky-Rosen paradox [3] in terms of
pairing of spins, spin singlets have become the canonical
example of an elementary entangled state. From an experi-
mental standpoint, manipulating singlet pairs of electron
spins, in particular, is promising because of the vast ex-
pertise already available in solid-state electronics [4].

Several proposals have emerged [5–8] that aim to gen-
erate a controlled flow of electron spin singlets using
Coulomb blockade and tunneling through quantum dots.
This is a challenging endeavor because it is necessary to
suppress the natural tunneling of unwanted single electrons
without hampering the singlets, which must be delivered
well before the device decoherence time. In this Letter, we
present a scheme that generates a selective flow of only
electrons belonging to singlets. As a result, it is not neces-
sary to introduce mechanisms that remove single electrons
but can end up impeding the singlet flow. Our scheme relies
on a generalized form of adiabatic quantum pumping that
is induced by localized interactions. Along with other
attractive characteristics that we discuss below, this pro-
cess is appealing since the absence of bias and the adiabatic
nature of the pumping could ease its integration into a
quantum information device.

The notion of quantum pumping has its roots in a
speculative paper by Thouless [9] in 1983, but advances
in nanoscale transport have led to a renewed and growing
interest in the phenomenon in recent years both theoreti-
cally and experimentally [10–17]. Quantum pumping is a
coherent process that creates a direct current in the absence
of any bias through a nanoscale device, by changing its
scattering properties periodically through independent
adiabatic variation of two or more physical parameters.
Adiabatic quantum pumping of charge [10], spin [13–15],
and thermal [16] currents has been considered. However,

previous studies have generally relied on a theoretical
description based on transmission and reflection coeffi-
cients which cannot be used to describe the pumping of
singlets due to localized interactions. In this Letter, we
develop a significant generalization of the theory of quan-
tum pumping that can describe such a flow of electron
singlet pairs.

Singlet current.—We consider a single available chan-
nel in a quasi-one-dimensional mesoscopic conductor con-
nected to macroscopic contacts [Fig. 1(a)]. In the presence
of two-body interactions, the charge current can be defined
in terms of the two-particle reduced density matrix �2. If
the interaction does not affect spins, the reduced density
matrix separates into four independent spin subspaces, one
singlet with a symmetric spatial part and three triplets with
antisymmetric spatial parts; the singlet current is therefore
equivalent to the charge current associated with the sym-
metric spatial part (�S2) of the two-particle reduced density
matrix
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FIG. 1. (a) Schematic figure of a one-dimensional system in
which the two-body interaction V�x1; x2; t� acts when x1 and x2

are both within a finite interval near�l or when both are within a
finite interval near l. (b) A tight-binding model where the two-
body interaction is present only at lattice sites m � �1; the
interaction strengths U��t� at the two sites are the time-
dependent pumping parameters.
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where Im signifies the imaginary part. We consider a
situation in which two-body interactions are localized,
meaning that they are nonvanishing only when the particles
are in certain finite intervals, as shown in Fig. 1(a). Such
interactions lend themselves to a scattering description,
and the current can be approximately evaluated by expand-
ing the density matrix in terms of two-particle scattering
states
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Here E denotes the energy required to remove a pair of
particles from the many-body ground state, and F�E� is
the distribution of this pair energy. The effect of inter-
action on the current is determined completely by the
two-particle singlet scattering states �k1;k2

arising from
free singlet states �k1;k2

�x1; x2� �
1��
2
p 	�k1

�x1��k2
�x2� �

�k1
�x2��k2

�x1�
, where �k�x� denotes a single particle
plane wave state with momentum @k.

Pumped current through adiabatic perturbation.—The
two-particle scattering states, and therefore the current, are
determined by the interaction V� �x; t� between a pair of
particles; we take it to be time-dependent and to occur
only in a finite region jxij< l. Most importantly, the inter-
action V� �x; t� is chosen to be localized so that it affects only
singlets, thereby naturally eliminating the flow of triplets in
the absence of a bias. When the characteristic period ! of
the time variation of the potential is slow compared to the
time �t the particles dwell in the scattering region [18]
!� �t� 1, we can apply adiabatic perturbation theory
to express the scattering states of the time-dependent
Hamiltonian in terms of the instantaneous states up to
linear order
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We use the notation �x � fx1; x2g and �k � fk1; k2g, so that
Gt� �x; �x0;E� is the two-particle instantaneous retarded
Green’s function for the full Hamiltonian. The instanta-
neous state �t

�k
� �x� is a solution of the time-independent

Lippmann-Schwinger equation for the potential V� �x0; t� at
the specific time t,

 �t
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where G0 is the free two-particle retarded Green’s func-
tion. Taking the time derivatives of the defining equations
for �t� ~x0� and Gt� �x; �x0;E� enables us to express the second
term in Eq. (3), which is linear in @t, as
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If there is no bias or time dependence, the laws of
thermodynamics demand that there should be no current;
we explicitly confirm that our expression for the current
satisfies this essential physical requirement. The net cur-
rent in the absence of time dependence is evaluated by
using the zeroth order term from Eq. (3) for the scattering
state in Eq. (2): �k1;k2

�x1; x2; t� � �t
k1;k2
�x1; x2�. The re-

sulting expression can be simplified by relating the imagi-
nary part of the retarded Green’s function to the free singlet
states: ImfG0� �x; �x0;E�g � ��

R
dk1
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dk2�	�@2k2
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�
�k
� �x0�. Then repeated use of the

Lippmann-Schwinger equation and properties of the
Green’s functions shows that the net current corresponding
to the zeroth order �t� �x� vanishes.

After confirming that our expression cannot produce
spontaneous current, we evaluate the singlet current in-
duced by the adiabatic time evolution. To linear order in
the time dependence, this involves the evaluation of

 

Z
dx2 Imf@x1

�t
�k
�x1; x2�����k�x

0
1; x2; t�gx1�x01

(6)

within the expression for the current in Eq. (2). A calcu-
lation employing standard Green’s function identities,
similar to that for the zeroth order, leads to an expression
for the net amount of singlet entangled electron pairs
pumped in a complete cycle of period �, yielding the
main result of this Letter:
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Singlet pumping in a turnstile model.—We illustrate our
results with a tight-binding model [Fig. 1(b)] with two
Hubbard impurities located at sites �m, m

 V� �n; t� � U��t��n1;�m�n2;�m �U��t��n1;m�n2;m: (8)

Two electrons can interact only if they are both together at
one of those two sites; therefore, due to the Pauli principle,
only singlets are affected. The strengths of the interactions
U��t� are the two time-dependent pumping parameters.
This concept is similar to a ‘‘turnstile model’’ [11] but
differs significantly in that, instead of time-varying exter-
nal potentials, the two-body interaction among electrons is
varied in time. We separately derived a discrete version of
Eq. (7); the end result amounts to replacing the coordinate
arguments with site indices x! n, integrals by sums, and
derivatives with a finite difference form. A lengthy calcu-
lation leads to an expression for the singlets pumped in a
complete cycle in terms of the free two-particle lattice
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Green’s function, specifically, two of its matrix elements G0�0� � G0� �m; �m;E� and G0�2 �m� � G0� �m;� �m;E�
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Here �m � fm;mg, and T��t� � 1=�U�1
� �t� �G0�0�� is the

T matrix for a single Hubbard impurity, andG�0 � G0�2 �m�
for � � �ij�j, when expressed in the form G0�2 �m� �R
�
0
dk
2� 	e

2m�ik���= sinh���
 with cosh��� � E=2� cos�k�.
Exact analytical forms exist for the lattice Green’s func-

tions G0 in terms of elliptic integrals [19]. For the purpose
of numerical estimates, we assume a square-profile time
dependence [12] in the plane of the parameters U��t�,
shown in Fig. 2(a), where the two parameters change
alternately between a minimum value Umin and a maxi-
mum value Umax. The pair distribution function is taken to
be a Fermi function F�E� ’ 1=	e�E�E�=kT � 1
. At low
temperatures, an integration by parts with respect to energy
yields an expression for the pumped singlets in terms of the
maximum energy E available for a pair.

We express all energies in units of the nearest neighbor
coupling strength J. The on site energy of each tight-
binding site is taken to be zero. In Fig. 2(b), we plot the
net singlets pumped in a single cycle as a function of the
size and location of the square footprint of the time cycle in
the space of the parameters U�; the flow depends on the
enclosed region. Figure 3 shows the dependence of the
singlet current on the parameter E that measures the avail-
able energy for pairs of electrons determined by the chemi-
cal potential in the contacts. The two curves in the figure
correspond to different locations of the Hubbard impuri-
ties, at lattice sites m � �1 and m � �2, illustrating the
significant effect the spatial separation of two impurities

has on the pumping rate. The direction of flow can also
reverse for certain values of the various parameters; revers-
ing the time cycle is not the only way to reverse the
direction of the current [10]. Quantum pumping has the
intrinsic property that the magnitude of the pumped quan-
tity, in this case singlets, is continuous in nature, so that the
delivery rate per cycle can be continuously adjusted. Thus,
there are several ways to precisely control the magnitude
and direction of the flow of singlets dynamically.

Discussion and outlook.—The turnstile model could be
implemented by taking the interaction sites to be quantum
dots, with the Coulomb interaction among electron pairs
varied periodically by changing the shape of the confining
potential. With two independently controllable parameters
for each dot, the interaction strength can be varied, while
keeping the single electron energy in the dot fixed and far
off resonance with the chemical potential in the leads. Such
a setup will suppress single electron pumping which relies
on resonance [11]. Furthermore, arranging the pumping
cycle to follow a path where only singlets can form in the
quantum dots while triplets and other higher energy states
are not energetically accessible, one can assure that only
singlets will be pumped.

One way to realize this would be to use two concentric
top gates with independently controllable voltages. Adjust-
ing the difference between the inner and outer gate voltages
would change the transverse confining potential and hence
the electron-electron interaction. Simultaneously changing
the sum of the potentials would allow a compensating shift
of the single electron energy to keep it fixed. Estimates
show that a 20% change in the gate voltages would yield a
10% variation of the interaction strength and, hence, of the
pumping parameters U� [20].
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FIG. 2 (color online). (a) Pumping cycle in the space of
parameters U�. (b) Net singlets pumped in a single cycle as a
function of the location and size of the square pumping cycle as
Umin and Umax are varied. Here Umin and Umax are in units of
intersite coupling strength J.
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FIG. 3. Net singlets pumped per cycle as a function of the
maximum available energy E for pairs. The two curves corre-
spond to different separations of the Hubbard impurities: the
solid line for impurities lattice sites �1 and the dashed line for
impurities at sites �2.
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The adiabatic condition requires that the period satisfy
�� �t, where the dwell time is given by �t � d=v, with d
the size of the scattering region and v the carrier velocity
[18]. (We get similar results if we adopt the alternate
condition �� tesc, where tesc � h=�E is the escape time
associated with the dot energy level spacing �E.) Using
typical estimates of interdot coupling �1 meV and inter-
dot separations of about 50 nm, we estimate group veloc-
ities of order 105 m=s, so that for a scattering region
d� 100 nm the adiabatic condition would allow
�103 cycles per nanosecond, leaving plenty of room to
achieve pumping rates of several singlets per nanosecond.
In typical Coulomb-blockade-based schemes, the most
optimistic estimates yield a delivery rate of the order of
1 ns per singlet [6,7]. Thus, our approach also has the
potential to be faster.

Our result Eq. (7) has the merit that it can also be applied
to quantum pumping in systems that allow an independent
particle description, as considered in previous studies. All
the elements in Eq. (7) then reduce to single particle
functions: F�E� ! f�E� is the Fermi distribution function
and the Green’s function is a single particle one with an
asymptotic form! �i	m=�@2k�
eikx t�k �x

0� in terms of the
scattering state  tk�x

0� and wave vector k � 	2mE=@2
�1=2.
This yields the pumped charge
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which agrees with expressions derived in earlier works
[10,12]. But, unlike most previous treatments, we never
use 1D scattering matrix elements, as they do not have
useful generalizations when particles interact with each
other in a region rather than scatter off an external
potential.

To summarize, we have proposed a method based on
two-body adiabatic quantum pumping for generating a
dynamically controlled flow of spin-entangled electrons.
The process is inherently coherent, potentially faster than
most current proposals, has reduced noise because the lack
of bias suppresses the natural current of single electron
flow, and allows for continuous adjustment of the flow
through numerous physical parameters. All of these fea-
tures can be developed and incorporated into a compre-
hensive scheme to generate a controlled flow of entangled
electrons. Our goal here has been to present the basic idea,
develop a theoretical framework for its description, and
discuss a possible physical model for implementation. We
have in the process generalized the treatment of quantum

pumping to incorporate interactions that cannot be treated
in a scattering matrix approach.

This work was supported by the Packard Foundation and
NSF NIRT program Grant No. DMR-0103068.

Note added.—While developing our original proposal
[21] into this Letter, we became aware of a creative idea
[22] to generate entangled electron-hole pairs using a one-
body potential in a scattering matrix approach.
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