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The validity of mode-coupling theory (MCT) is restricted by an uncontrolled factorization approxi-
mation of density correlations. The factorization can be delayed and ultimately avoided, however, by
explicitly including higher order correlations. We explore this approach within a microscopically
motivated schematic model. Analytic tractability allows us to discuss in great detail the impact of
factorization at arbitrary order, including the limit of avoided factorization. Our results indicate a coherent
picture for the capabilities as well as limitations of MCT. Moreover, including higher order correlations
systematically defers the transition and ultimately restores ergodicity. Power-law divergence of the
relaxation time is then replaced by continuous but exponential growth.
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The dynamic scaling in dense supercooled liquids and
colloidal suspensions is a subject surrounded by contro-
versy. Mode-coupling theory (MCT) has shaped our under-
standing through detailed and remarkably successful
predictions [1]. A salient result of MCT is the existence
of an ideal glass transition. The latter, however, is predicted
to occur at substantially higher temperatures or lower
densities than that observed in the laboratory [2].
Furthermore, it has been suggested that there are ‘‘acti-
vated processes’’ not accounted for by MCT which restore
ergodicity and thus round off the ideal transition [3,4]. In
order to remedy such shortcomings one should scrutinize
the approximations made within MCT.

A fundamental quantity in MCT is the two-point corre-
lator Fk�t� �N �1h��k�0��k�t�i, with �k the Fourier
transform of spatial particle density fluctuations. For N
particles interacting through a pair potential one finds,
using standard projection operator techniques [1,5],

 

�Fk�t� ��kFk�t� � ��k � _Fk��t� � 0: (1)

Here �f � g��t� �
R
t
0 d�f���g�t� �� and dots indicate

time derivatives. Further �k � kBTk
2=mSk, where kB is

the Bolzmann constant, T the temperature, m the par-
ticle mass, and Sk � Fk�0� the static structure factor.
The memory function �k�t� is related to the autocorrelation
of the fluctuating force. Within MCT it is assumed [1]
that its dominant contribution arises from pair-density
modes �q�k�q. A projection of the fluctuating force onto
this pair subspace gives �k�t� �

P
q;q0V

�
q;k�qVq0;k�q0�

Fq;k�q;q0;k�q0 �t�, where Vp;q represents static projec-
tions of the fluctuating force and Fp;q;p0;q0 �t� �
h��p�0���q�0��p0 �t��q0 �t�i is a four-point correlator with
projected dynamics. On an ad hoc basis, static and dy-
namic correlations are then subjected to Gaussian factori-
zation. An additional convolution approximation for the
statics reduces the memory function to �k�t� �R
dqwq;k�qFq�t�Fjk�qj�t�, with a weight-factor wp;q con-

taining only static information. Under these approxima-

tions for �k�t� Eq. (1) is closed in Fk�t� and we have arrived
at standard MCT.

Various versions of extended mode-coupling theories
(EMCT) have been put forward to account for activated
processes [4]. These theories perturbatively invoke a cou-
pling to current modes. But recent simulations of Brownian
systems [6], where the momentum current should not
effectively couple to slow relaxation, have shown that
deviations from MCT can be as large as they are in
Newtonian systems. Also, recent theoretical work has
cast grave doubt on the role of current modes in EMCT
[7]. It would appear that perturbative coupling to currents
cannot provide the local physics necessary to restore ergo-
dicity deep within the activated regime.

Within a theory entirely based on density modes one is
thus lead to reconsider the applicability of Gaussian facto-
rization [8–10]. Proceeding in the projection operator ap-
proach one shows that the actual evolution of four-point
correlations is governed by an equation analogous to (1)
that, in turn, couples to six-point correlations, and so on.
The factorization approximation may thus be delayed, a
perturbative framework we refer to as generalized mode-
coupling theory (GMCT). Recent implementations of
GMCT [9,10] have demonstrated that the inclusion of
higher order density correlations appears to systematically
lower the transition temperature (or raise the transition
volume fraction), suggesting that some aspect of activated
behavior is captured.

In this Letter we illustrate the potential of GMCT to
account for activated processes, meaning—here and
throughout—the processes discarded in MCT due to fac-
torization. This may be achieved through the nonperturba-
tive limit where the full multipoint basis of dynamical
correlations is included [11]. Our discussion is based on
a schematic model as its analytic tractability provides
deeper insights than could be obtained from numerical
analysis of more realistic systems. To motivate its form
we briefly return to Eq. (1) and its higher order general-
izations. It is useful to normalize �k�t� � Fk�t�=Sk. For
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simplicity and following [9,10] we focus on diagonal
contributions q � q0 in the memory function �k�t�.
Treating static correlations as in MCT but retaining the
dynamic four-point correlations �k1;k2

�t� � Fk1;k2;k1;k2
�t�=

Fk1;k2;k1;k2
�0� leads to �k�t� �

R
dq�q;k�q�q;k�q�t�, where

�p;q � SpSqwp;q with the same weight-factor wp;q as in
MCT. At second-lowest order the projection operators
yield [9,10]

 

��k1;k2
�t� ��k1;k2

�k1;k2
�t� � ��k1;k2

� _�k1;k2
��t� � 0;

with �k1;k2
� �k1

��k2
. The fluctuating force for pair

densities is essentially a product of three density modes.
We perform a corresponding projection and again con-
sider only diagonal wave-vector terms in �k1;k2

�t�.
Simple treatment of the static projections as before then
gives �k1;k2

�t� � 	�k1

R
dq�q;k1�q�q;k1�q;k2

�t� ��k2
�R

dq�q;k2�q�q;k1;k2�q�t�
=��k1
��k2

� and �k1;k2;k3
�t� a

normalized six-point correlation function.
This procedure may be continued indefinitely and in-

duces a hierarchy of evolution equations for dynamical
multipoint correlations. Our schematic model is obtained
by dropping the wave-vector indices. We replace �k�t��
�1�t�, �k1;k2

� �2�t�, etc., and since we effectively do not
discriminate between different wave vectors, �k1

� � � � �

�kn � �n. The memory functions naturally [12] become
�k1;...;kn�t�� ���n�1�t�. Neglecting inertial effects and
including the bare viscosities arising from the short-time
portion of the memory functions we arrive at the schematic
hierarchy

 

_�n�t� ��n�n�t� �����n�1 � _�n��t� � 0: (2)

From now on we set � � 1 as it can be absorbed by a
rescaling of time. Note that Eq. (2) reduces to the F2 model
when closed with �2�t� � �2

1�t� [1,13]. The drastic sim-
plifications inherent in our schematic hierarchy clearly
prohibit a quantitative interpretation of its predictions.
Nevertheless, one would expect that Eq. (2) captures the
general phenomenology of GMCT in a similar way as the
F2 model does for MCT.

The entire analysis of our schematic hierarchy is based
on one central identity. It applies in Laplace transformed
representation, �̂n�s� � Lf�n�t�g, where Eq. (2) reads

 �̂n�s� �
�
s�

n

1���̂n�1�s�

�
�1
: (3)

Recursion of this equation produces a continued fraction.
Using various transformations (all mathematical details
will be given in [14]), however, we derive an identity that
directly relates any two functions �̂m and �̂n:

 �m�s� � �n�s� with �n�s� � ��n�
vn�s�
un�s�

; (4)

where ��z� denotes the Gamma function and

 

un�s� � ��s� 1; s� n� 1; �� � �̂n�s���s; s� n; ��;

vn�s� � ��s� 1; s� n� 1; �� � �̂n�s���s; s� n; ��:

The latter expressions contain the (regularized) confluent
hypergeometric functions ��a; b; z� � 1F1�a; b; z�=��b�
and ��a; b; z� [15]. Note that �m�s� � �n�s� for any m,
n implies that �n�s� is independent of n and thus invariant
under (3). So any single �̂m�s� determines the invariant
��s� � �m�s� and from that, in turn, all �̂n�s� follow by
simply rearranging ��s� � �n�s�.

In GMCT the hierarchy (2) is closed through factor-
ization at some order N 
 2. In general this amounts
to �N�t� � �m1

n1
�t��m2

n2
�t� � � ��mk

nk �t�. Here orders ni ap-
pear with multiplicity mi 
 1 such that N � n1m1 �
n2m2 � � � � � nkmk. In schematic MCT �2 � �2

1, while
GMCT closures considered previously correspond to�3 �
�1�2 [9] and �4 � �2

1�2 [10]. It turns out that for any
factorization there is a critical coupling �c above which
the �n�t� do not relax fully, i.e., qn � �n�t! 1�> 0.
This can be deduced from Eq. (4): associated with each
closure is a polynomial, say, in q1, whose real roots are
dynamical fixed points. Some examples of critical cou-
plings �c, where real roots appear, and the corresponding
plateau heights q1 for low order closures are listed in
Table I. We observe that within each order N the value of
�c is lowest for the factorization �N � �N

1 while it is
largest for �N � �n�N�n with n the integer part of
N=2. More importantly, there is an overall increase in �c
as we raiseN. Indeed, for the factorization�N � �N

1 it can
be shown that �c � N for N � 1. Including higher order
correlations does not merely affect �c quantitatively but in
fact allows us to increase its value unboundedly. Implica-
tions of this result will become clear in the following.

The dynamics of GMCT under higher order factoriza-
tion closures, which has never been investigated, can be
obtained (schematically) by numerical integration of
Eq. (2). Because of factorization of �N�t� the hierarchy
reduces to a set of coupled nonlinear integrodifferential
equations in f�1�t�; . . . ; �N�1�t�g. It is efficiently inte-
grated by the algorithm of [16]. The results in GMCT
with N 
 3 turn out to be remarkably similar to those of
MCT. For any given factorization, �1�t� displays two-step
relaxation when � approaches the relevant critical value
�c from below. As �! �c the �-relaxation time � di-
verges and �1�t� assumes the nonzero limit q1 � �1�t!
1�. We have performed a scaling analysis, which is based
on Eq. (4) and �̂N�s� � Lf

Q
i�

mi
ni �t�g, to precisely charac-

TABLE I. Critical couplings �c and associated plateaus q1 �
�1�t! 1� for all factorizations of �N�t� with N � 2; 3; 4.

�2
1 �3

1 �1�2 �4
1 �2

1�2 �2
2 �1�3

�c 4 4.4922 4.8284 4.9398 5.2359 5.6946 5.6046
q1

1
2 0.5453 0.5858 0.5839 0.6205 0.6782 0.6565
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terize the critical properties near �c. It can be shown that
the scaling equations for our hierarchy are in fact formally
identical to those for usual schematic models [1]. Hence �
relaxation follows the power laws �1�t� � q1 � t�a and
q1 ��1�t� � tb in the early and late regimes, respectively,
and the �-relaxation time diverges like �� 1=��c ����.
Strikingly the exponents a, b, and � for these scaling laws
are identical for all factorization closures �N �

Q
i�

mi
ni .

Their values exactly match those of the F2 model [1], that
is, a � 0:395, b � 1, and � � 1

2a�
1

2b , regardless of
closure.

While tempting, the above results cannot be interpreted
as supporting the standard MCT picture. The occurrence of
the robust critical scaling under higher order closures is
systematically deferred along with the critical point �c �
N itself. We turn to the nonperturbative limit N ! 1 of
avoided factorization to develop a deeper understanding.
According to our general result (4) all functions �̂n�s� are
known once we have determined the invariant ��s�.
A priori the latter depends on how we close the hierarchy
since we may write ��s� � �N�s�. However, analysis of
�N�s� shows that for all physically reasonable closures the
invariant of the infinite hierarchy vanishes ��s� �
limN!1�N�s� � 0. Thus the infinite hierarchy has a
unique solution. Rearranging �n�s� � ��s� � 0 then pro-
duces the exact result

 �̂ n�s� �
��s� 1; s� n� 1; ��

��s; s� n; ��
: (5)

The regularized confluent hypergeometric functions � are
analytic in s. Therefore the only singularities in Eq. (5) are
(first order) poles at points fsig where the denominator
��si; si � n; �� � 0 vanishes. The relaxation spectrum
fsig is infinite, discrete, and contained in the negative real
axis. Consequently, the inverse Laplace transform of
Eq. (5) is of the form �n�t� �

P
1
i�0 rie

sit with ri the
residues at s � si. Numerical evaluation of both fsig and
frig is straightforward. Plots of the solutions �1�t� of the
infinite hierarchy are shown in Fig. 1. Upon increasing � a
single component s0 of the spectrum approaches the origin.
Hence the shape of � relaxation in our schematic hierarchy
is exponential with � defined by s0t � �t=�. From
��s0; s0 � 1; �� � 0 one shows that �� e�=� for ��
1. There is no MCT transition in the infinite hierarchy at
any finite �. Instead, the relaxation time � essentially
grows exponentially in �. Remarkably, this hallmark of
nonperturbative behavior [3] emerges from our micro-
scopically motivated dynamical approach.

We now discuss how the above results merge into a
consistent picture. In the infinite hierarchy, memory effects
first appear in the relaxation of �1�t� but gradually spread
into the hierarchy upon increasing �. This causes the
exponential slowdown in the dynamics of �1�t�. The
MCT closure �2 � �2

1, while appropriate for small �,
generally overestimates the relaxation time of �2�t�. As

shown in Fig. 1 the MCT solution matches that of the
infinite hierarchy at � � 1 but already deviates at � �
2. When � approaches �c � 4 the feedback through the
closure drives the MCT solution into a spurious transition,
while in the infinite hierarchy the relaxation of �1�t�
develops only a shoulder (see Fig. 1 at � � 4). This is
also typically observed in experiments and simulations at
the point where MCT predicts a glass transition [2]. If,
however, the factorization is delayed to higher order cor-
relations, then so is the appearance of feedback through the
closure. We refer again to Fig. 1, which also shows GMCT
solutions under factorization �7 � �3�4. These perfectly
match the infinite hierarchy even at � � 4, but again
deviate as � is raised further towards the critical value
�c � 8:1049 of this closure. Of course the validity of
GMCT may be extended to any value � by raising N. In
the nonperturbative limit the transition is deferred to �c �
N ! 1 and we arrive at the ergodic solution (5) of the
infinite hierarchy. The fact that the �n�t� derived from
Eq. (5) do not obey any factorization corresponds to under-
lying non-Gaussian dynamical fluctuations [11]. In micro-
scopic systems these are a natural consequence of coopera-
tive, heterogeneous dynamics—not fully accounted for in
MCT due to Gaussian factorization. However, microscopic
GMCT offers the potential to systematically capture non-
Gaussian fluctuations and thus the underlying processes
that cause them.

Strikingly the solutions of the infinite hierarchy never-
theless carry some important features consistent with
MCT. Figure 2 shows GMCT solutions under factorization
at orders N � 2; 3; . . . ; 7 at the corresponding critical cou-
plings �c. From our discussion of the dynamics in GMCT
we know that each of these functions approaches its rele-
vant plateau q1 (see Table I) like a power law t�a with the
MCT exponent a � 0:395. Now compare these critical
solutions to those of the infinite hierarchy (Fig. 2) at the
same values of �: apparently there is an excellent match
throughout the early �-relaxation regime. In this sense the
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FIG. 1 (color online). Exact solutions of the infinite hierarchy
[Eq. (5)] at � � 1; 2; . . . ; 10 (solid curves), MCT with closure
�2 � �2

1 at � � 1; 2 (dashed curves), and GMCT under �7 �
�3�4 at � � 4; 5; 6 (dash-dotted curves). See text for discus-
sion.
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hierarchy appears to approach criticality with a
�-relaxation exponent a as predicted by MCT. Likewise,
we could extract the MCT exponent b � 1 characterizing
late � relaxation where �1�t� drops below its plateau. A
consistent MCT picture would then require power-law
scaling of the relaxation time � with a particular exponent
�. For fitting purposes this power law is usually expressed
in T � Tc rather than �c ��, which is equivalent (asymp-
totically) close to criticality. Noting that 1=� is generally
an increasing function of T [1] (and thus represents a
temperaturelike variable) we write �fit � A=���1 �
��1
c �

�. Most remarkably, this power law with the MCT
exponent � � 1:765 indeed fits the relaxation time of the
infinite hierarchy well over 3 � � � 9 covering, as in
simulations [2], about two to three decades in �; see inset
of Fig. 2. Thus, within this limited dynamical range the
solutions of the infinite hierarchy exhibit power-law be-
haviors characterized by the MCT exponents a, b, and �.
The fitted �c � 10:1, lying well above the MCT value
�c � 4, is consistent with correspondingly lower Tc ex-
trapolated in experiments and simulations [2]. However,
contrary to MCT these power laws do not reflect asymp-
totic scaling in the infinite hierarchy. In fact, there is no
divergence of the relaxation time �� e�=� at any finite �,
and, in particular, not at �c � 10:1 as extrapolated from
the power-law fit.

The entire phenomenology discussed above emerges
purely from the structure of our schematic hierarchy (2).
The qualitative differences between the nonperturbative
and MCT solutions of Eq. (2) in several aspects resemble
those found when contrasting experimental or simulation
data [2,6,17] with microscopic (k-dependent) MCT, e.g.,
predicted versus fitted Tc or the apparent power-law be-
haviors and deviations away from them. Our analysis
resolves these discrepancies, leading to a coherent picture
based upon non-Gaussian dynamical fluctuations. To de-

scribe the relaxation of supercooled liquids in full detail,
including, e.g., stretched exponentials, numerical analysis
of microscopic (k-dependent) GMCT will be necessary.
One would hope that such an approach preserves the
successful features of MCT, for instance, accurate predic-
tion of the plateau values. Beyond that, however, it might
not only offer a possibility to systematically improve the
predictions of MCT, particularly through the nonperturba-
tive limit, but also provide a kinetic approach to capture
dynamical heterogeneity. The implications of the work
presented here on related issues, such as the breakdown
of the Stokes-Einstein relation, will be explored in future
work.
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(1987); R. Schmitz, J. W. Dufty, and P. De, Phys. Rev.
Lett. 71, 2066 (1993).

[5] U. Balucani and M. Zoppi, Dynamics of the Liquid State
(Oxford University Press, Oxford, 1994).

[6] G. Szamel and E. Flenner, Europhys. Lett. 67, 779 (2004);
E. Flenner and G. Szamel, Phys. Rev. E 72, 011205
(2005); 72, 031508 (2005).

[7] M. E. Cates and S. Ramaswamy, Phys. Rev. Lett. 96,
135701 (2006); A. Andreanov, G. Biroli, and
A. Lefevre, J. Stat. Mech. (2006) P07008.

[8] E. Zaccarelli et al., Europhys. Lett. 55, 157 (2001).
[9] G. Szamel, Phys. Rev. Lett. 90, 228301 (2003).

[10] J. Wu and J. Cao, Phys. Rev. Lett. 95, 078301 (2005).
[11] G. Szamel, Europhys. Lett. 65, 498 (2004).
[12] We replace

R
dq�q;k�q by an effective weight �� (and

similarly assume uniformity of the short-time viscosities).
[13] U. Bengtzelius, W. Götze, and A. Sjölander, J. Phys. C 17,
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FIG. 2 (color online). Main panel: Critical solutions (dashed
lines) for closures �2

1, �1�2, �2
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the infinite hierarchy (dots) for � � 2; 2:5; . . . ; 10 and an MCT
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c �
�, with � � 1:765 fixed

but A � 0:7 and �c � 10:1 fitted.
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