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This Letter reports on a new approach to properly analyze time series of dynamical systems which are
spoilt by the simultaneous presence of dynamical noise and measurement noise. It is shown that even
strong external measurement noise as well as dynamical noise which is an intrinsic part of the dynamical
process can be quantified correctly, solely on the basis of measured time series and proper data analysis.
Finally, real world data sets are presented pointing out the relevance of the new approach.
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A major challenge in analyzing time series originating
from complex systems is to reveal the underlying process
dynamics. Typically the simultaneous involvements of
nonlinearities, dynamical noise, and measurement noise
cause problems for many experimental situations and ac-
count for the complexity of this task. The handling of these
complications is the central concern of this Letter.

To extract an underlying signal disturbed by noise, linear
and nonlinear predictor models or noise reduction schemes
are widely used (for discussion see [1] and references
therein). Here we choose an alternative approach based
on the broad class of Langevin processes, which describes
a variety of complex dynamical systems.

Let us consider a one-dimensional Langevin process
(the extension to more dimensions is straightforward)
that is given by

 _x � D�1��x� �
���������������
D�2��x�

q
��t�: (1)

The term ��t� represents Gaussian white noise with
h��t�i � 0 and h��t0���t�i � ��t� t0�. The terms D�n��x�
are called the drift coefficient (n � 1) and the diffusion
coefficient (n � 2) and reflect the deterministic and the
stochastic part, respectively.

���������
D�2�
p

fixes the amplitude of
the stochastic part and is referred to as dynamical noise. If
D�2� depends on x, it is called multiplicative noise; other-
wise it is called additive noise.

In recent years a parameter-free reconstruction of the
coefficients and thus of the corresponding Langevin pro-
cess has been achieved [2–6]. It has been successfully
demonstrated that traffic flow dynamics [7], the chaotic
dynamics of an electronic circuit [8,9], or the human heart
beat rhythm [10] can be reconstructed without need of any
a priori models but just from measured time series and the
estimated drift and diffusion coefficients. This estimation
is based on the evaluation of the first (n � 1) and the

second (n � 2) conditional moments:

 M�n��x; �� � h�x�t� �� � x�t��nijx�t��x; (2)

from which the coefficients are derived according to

 D�n��x� � lim
�!0

1

�
M�n��x; ��: (3)

For ideal time series with a sufficient temporal resolution
the coefficients D�n��x� can unambiguously be obtained
from Eq. (3). For real data sets, however, the sampling
frequency might be too low to resolve the dynamics prop-
erly as was pointed out in [11,12]. For small but finite � the
conditional moments are better approximated by an Ito-
Taylor series expansion (e.g., [12–14]):

 M�1��x; �� � �D�1��x� �O��2�;

M�2��x; �� � �D�2��x� �O��2�:
(4)

Depending on the process it might be necessary to consider
further higher order terms for estimating the coefficients.
To finally decide whether an obtained set of coefficients
represents the real dynamics at least a consistency check
between the statistical properties (moments, probability
densities, etc.) of the reconstructed and of the original
time series has to be performed (cf. [15]).

Another important effect that complicates a proper esti-
mation of D�n� is the presence of measurement noise ���t�
[with h��t�i � 0 and h��t���t0�i � ��t� t0�], which is
superimposed on the data. Measurement noise corresponds
to a rather unavoidable experimental situation (e.g.,
[1,16,17]) and means that y�t� � x�t� � ���t� is examined
rather than x�t�. For instance, take the measurement of a
turbulent velocity time series. The resolution is chosen in
such a way that the largest fluctuations (on the largest time
scales) are resolved. A certain amount of measurement
noise might be negligible for these large scale fluctuations
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but can well be significant for the fluctuations on the
smallest scales where the fluctuations are much smaller.
More generally, the term ‘‘measurement noise’’ refers to
any superimposed uncorrelated noise that is present in
some complex system; it might even be generated by the
complex system itself.

To reconstruct the unknown dynamics x�t� from the
accessible y�t� it is thus essential to quantify ���t� and
its influence on the reconstruction of coefficients according
to Eqs. (3) and (4), which will be the central concern of this
Letter.

In [8,9,18] it has been shown that measurement noise
results in an offset term, �n, for the conditional moments

 M�n��y; �� ! M�n��x; �� � �n; (5)

 �1 � 0; �2 � 2�2: (6)

Any nonzero offset causes a strong overestimation of the
coefficients, D�n�, because it leads to a divergence of
M�n��y; ��=� in Eq. (3). In [8] it was therefore proposed
to use the offset �2 to quantify measurement noise and to
take the slope of the conditional moments (as a function of
�) as an estimate of the coefficients.

In this Letter we will show that Eqs. (5) and (6) are
restricted to the special case of low measurement noise,
thatM�1��y; ��must exhibit a �-independent part (i.e., �1 �

0), and that the slope of the conditional moment,M�n�, is no
longer proportional to the corresponding coefficient, D�n�.
In Fig. 1 the effect of measurement noise on M�1� is shown
for two real world examples, in which a strong offset at
� � 0 causes a divergence of M�1�=�. Finally, we propose
an improved method to quantify measurement noise even
for very large noise levels. To this end a general calculation
of the conditional moments will be performed. Thus we
can explain the measurement noise dependence of the
second and the first conditional moment and propose an
improved reconstruction of the underlying process. For an
Ornstein-Uhlenbeck process the results are analytical; for
non-Ornstein-Uhlenbeck processes the corresponding
analysis can be performed numerically.

Let us start with the calculation of the conditional mo-
ments from the accessible data y�t� spoilt by superimposed
measurement noise. Using the definition according to
Eq. (2) the following expressions can be derived:

 M�1��y;���hy�t����y�t�ijy�t��y�x�t�����t�

��
Z
D�1��x�f�xjy�dx�

Z
�x�y�f�xjy�dx

�m�1��y;����1�y�; (7)

 

M�2��y;����
Z
�2�x�y�D�1��x��D�2��x��f�xjy�dx

��2�
Z
�x�y�2f�xjy�dx

�m�2��y;����2�y�: (8)

The coefficients, D�n�, are implicitly given by the condi-
tional moments that exhibit a � dependent as well as a
�-independent part, denoted with m�n��y; �� and �n�y�,
respectively. According to Bayes’ theorem the unknown
probability density f�xjy� is given by f�yjx�p�x�R

f�yjx�p�x�dx
, where

f�yjx� denotes nothing other than the distribution of mea-
surement noise. Here we consider Gaussian distributed
measurement noise with variance �2. The distribution of
the process x�t�, given by Eq. (1), is denoted by p�x�. For
stationary processes the distribution is known to be

 p�x� �
N

D�2��x�
exp

�
2
Z x

�1

D�1��x0�

D�2��x0�
dx0

�
; (9)

where N denotes a proper normalization factor; cf. [19].
To extract the coefficients from the four equations of
Eqs. (7) and (8) we assume for convenience (but not
necessarily) that the coefficients can be modeled as poly-
nomials. For instance, take the case of a multiplicative
process with D�1� � d11x and D�2� � d20 � d21x� d22x

2.
Then 5 parameters (�, d11, d20, d21, and d22) have to be
derived by minimizing the distance between the four mea-
sured functions, �̂n�y�; m̂�n��y�, and the solutions given by
Eqs. (7) and (8), i.e.,

 min
�X
i

��̂1�yi� � �1�yi��
2 � ��̂2�yi� � �2�yi��

2 � �m̂�1��yi� �m
�1��yi��

2 � �m̂�2��yi� �m
�2��yi��

2

�
: (10)

For an Ornstein-Uhlenbeck process and for pure noise, Eqs. (7) and (8) can even be solved analytically. For the latter case

FIG. 1. Both plots show measured M�1� (squares) and M�1�=�
(circles) as a function of lag �. The left plot refers to the North
Atlantic Oscillation index [23], the right one to an increment
time series of financial exchange rates [18]. Units are arbitrary
for clarity of presentation. For both systems a significant offset
of the first conditional moment is observed causing a divergence
of M�1�=�.
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[i.e., y�t� � ���t�] the moments are given by

 M�1��y; �� � �y; M�2��y; �� � y2 � �2: (11)

This means that for pure noise the moments as a function of
� have vanishing slope but nonzero offset, while for an
ideal process according to Eq. (1) the situation is reversed.
Data from real processes will generally lead to M�n� values
with nonzero offsets and nonzero slopes.

Next we consider an Ornstein-Uhlenbeck process (given
by D�1� � ��x and D�2� � �) to which measurement
noise is added. In this case p�x� is a Gaussian distribution
with zero mean and variance s2 � �=�2��. The offsets

 �1�y� � �
�2

�2 y; �2�y� � �2 �
�2s2

�2 �
�4

�4 y
2 (12)

and the m�n� values

 m�1��y; �� � ����y� ��1�y��;

m�2��y; �� � ���� 2�f��2�y� � �
2� � y�1�y�g�

(13)

can be derived exactly from Eqs. (7) and (8) (see [20] for
details). Note that �2 :� s2 � �2 has been used and that �2

approaches 2�2 in the small � limit in accordance with
Eq. (6).

From Eq. (13) it is seen that the slopes of the moments,
m�n�=�, are affected by �n. Thus simply taking the slope as
an estimate of the coefficients—as suggested by Eq. (6)—
is not appropriate in the presence of larger measurement
noise, even for rather simple cases such as the Ornstein-
Uhlenbeck process. Estimates according to Eq. (3) will be
increasingly in error as �n�y� dominates the conditional
moments M�n��y; �� for large �.

For illustration let us consider a numerical realization of
an Ornstein-Uhlenbeck process with � � � � 1. Fig-
ure 2(a) shows the pure process (� � 0), and Fig. 2(b)
shows the process with strong superimposed measurement
noise (� � 1), corresponding to a negative signal-to-noise
ratio of approximately S=N � 20log10�s=�� � �3dB.
Without measurement noise the coefficients are directly
obtained either from the slopes of the conditional moments
or by using Eq. (3) as shown in previous works. The
reconstructed drift coefficient of Fig. 2(e) is found to be
� � 1	 0:01, and analogously D�2� � � � 1	 0:01 is
well reconstructed [see Fig. 2(f)].

In presence of measurement noise the moments
M�n��y; �� are still linear functions of � but, in agreement
with Eqs. (7) and (8), exhibit an additional offset term as
can be seen in Fig. 2(d). From the measured M�n��y; �� the
terms m�n��y; �� and �n�y� are obtained as follows:
 

m�1�=� � ��0:34	 0:02�y;

m�2�=� � �0:33	 0:02� � �0:42	 0:01�y2;

�1 � �0:667	 0:001�y;

�2 � �1:33	 0:02� � �0:445	 0:002�y2:

(14)

Using Eq. (12) we obtain the drift coefficient D�1��x� �
��x with � � 1:01	 0:02 in good agreement with the
expected value of � � 1.

To reconstruct the diffusion term D�2� � � the knowl-
edge of �1�y� and �2�y� even at a single position y is
sufficient when � is known. For instance, for y � �1 the
measured offsets are �1 � 0:65 and �2 � 1:74, leading to
s � 0:73 and � � 0:99. With s �

����������������
�=�2��

p
it follows that

� � 1:01	 0:04. To improve the accuracy of the parame-
ters a least squares algorithm is applied.

Based on the foregoing discussion of an Ornstein-
Uhlenbeck process, two important new results can already
be given. First, we see that the estimation of the magnitude
of measurement noise by the simple approach according to
Eqs. (5) and (6) is misleading. For instance, from the offset
�2�y � 0� � 2�2 � 1:34	 0:02 a �2 value of 0.67, which
is about 67% of the real value, would be extracted. This
underestimation has already been reported in [8] and can
now be understood quantitatively. Second, if the
small-�-estimate m�2�=� is taken as an approximation of
D�2�, as it is commonly done, then an artificial quadratic
diffusion term [see Fig. 2(f)] is obtained, masquerading as
multiplicative noise or a bad temporal resolution [12].

FIG. 2. (a) and (b) show an excerpt of an Ornstein-Uhlenbeck
process (� � 10�3, � � 1, and � � 1) with � � 0 in (a) and
� � 1 in (b). In (c) and (d) the derived M�1� are shown, where
(c) refers to x � �1 and � � 0, and (d) to y � �1 and � � 1.
In (e) and (f) the symbols represent the measured D�n�, fitted by
the solid lines (� � 0), and m�n�=�, fitted by the dashed lines
(� � 1), according to Eq. (13).
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Finally, we consider a general non-Ornstein-Uhlenbeck
process where the coefficients, D�n�, are implicitly given
only by m�n� and �n according to Eqs. (7)–(9). As an
example, let us consider a process with multiplicative noise
(D�2� � b� cx2) and linear drift (D�1� � �ax) which is
observed in various systems ranging from finance to turbu-
lence (cf. [15,21,22]). Here we take a � 1, b � 0:1, and
c � 0:5 and iterate numerically. The measurement noise
amplitude is � � 0:25, which corresponds to a signal-to-
noise ratio of S=N � 0. Figure 3(a) shows the observed
offsets, �n, together with the (numerical) solutions accord-
ing to Eqs. (7) and (8) for the iterated multiplicative
process. Figure 3(b) refers to the financial increment time
series for which the reconstructed coefficients are found to
be D�1��x� � �0:0012x and D�2��x� � 0:0014� 0:001x2

and the measurement noise amplitude is � � 0:11. This
result shows that multiplicative dynamical noise causes
intermittent heavy-tailed volatility statistics in financial
data as was proposed, and this is not due to a spurious
effect of measurement noise, as for the case of Fig. 2(f)].

From the examples of Fig. 3 we see again that the
understanding of the influence of measurement noise on
the conditional moments, i.e., on �n and m�n�=�, is the key
to achieving a proper reconstruction of the underlying
dynamical process (including the contribution of dynami-
cal noise and measurement noise) from pure data analysis.
Naively applying the definition according to Eq. (3) will no
longer be appropriate as soon as measurement noise is
present.

To conclude, we have shown (for numerical as well as
real world data) that adding measurement noise to signals
generated from a Langevin process leads to a fundamental
modification of the data analysis via the conditional mo-
ments. A general equation describing this modification has
been presented and for the class of Ornstein-Uhlenbeck

processes analytical results are given. This makes it pos-
sible to extract the strength of measurement noise, �, the
standard deviation of the underlying process, s, as well as
the drift and diffusion coefficients, D�1� and D�2�, rather
precisely even in presence of very strong measurement
noise. It is noteworthy that the evaluation of the process’
coefficients is solely based on analyzing the conditional
moments, which are directly obtained from the time series
without any need of premanipulating (e.g., filtering, mod-
eling) the data.
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FIG. 3. Symbols represent measured offsets and solid lines the
fits according to Eqs. (7) and (8). In both plots circles refer to �1

and squares to �2. (a) Iterated multiplicative process with D�1� �
�x, D�2� � 0:1� 0:5x2, and � � 0:25. (b) Normalized financial
increment time series.
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