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We describe a new design for a q wire with perfect transmission using a uniformly coupled Ising spin
chain subject to global pulses. In addition to allowing for the perfect transport of single qubits, the design
also yields the perfect ‘‘mirroring’’ of multiply encoded qubits within the wire. We further utilize this
global-pulse generated perfect mirror operation as a ‘‘clock cycle’’ to perform universal quantum
computation on these multiply encoded qubits where the interior of the q wire serves as the quantum
memory while the q-wire ends perform one- and two-qubit gates.
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The development of protocols for transmitting quantum
states is a particularly important problem in quantum com-
putation. The ability to produce qwires would allow quan-
tum information to be moved around within a quantum
processor. In the initial work [1,2], the transport of quan-
tum states through unmodulated spin chains was examined
and less-than-perfect transport fidelities were found [1,3–
7]. This is due to the dispersion of the quantum information
along the chain [8]. Much work has since ensued searching
for perfect q-wire transport schemes and briefly we can
categorize these into: (1) if the nearest-neighbor couplings
between systems comprising the q wire are set to very
specific values [6,7], one can achieve perfect transport.
(2) One can achieve near perfect transport by encoding
the quantum information into low-dispersion wave pack-
ets, or by encoding or decoding via conditional quantum
logic across multiple q wires [3,8–10]. (3) Use ‘‘gapped
systems,’’ where the q-wire ends are only weakly coupled
to a strongly intercoupled interior of the q wire [11], to
achieve near perfect transport. (4) Other possibilities in-
clude teleportation of the quantum information along the q
wire by measurements [12], encoding into solitonlike ex-
citations [13], or use quantum cellular automata concepts
[14]. Besides the transport of single qubits, of more interest
is the capability of the q wire to transport entire qubit
registers via ‘‘quantum mirror wires’’ [15]. Here an un-
known multiqubit quantum state, when encoded at one end
of the wire is transmitted to the other end, but in reverse
order, �i1i2���iNj1j2���jN

2H 1�H 2����H N! ~���iNiN�1���i1
jN���j1

.
Experimental proposals for q wires include Josephson
junction arrays [16], molecular magnet wires [17], quan-
tum nano-electromechanical systems [18], and tunnel-
coupled electronic quantum dots [19].

As well as demonstrating that globally addressed qwires
can yield perfect qubit transport and perfect multiqubit
mirroring we will also show that they can be used to
execute universal quantum computation. We achieve this
via a combination of the application of selective local
unitaries on the ends of the q wire and homogenous local
unitaries [HLUs [20] ] (or global pulses) on the entire q

wire. The use of HLUs alone to perform quantum compu-
tation has been examined by a number of authors [2,21–
23]. In all but the last of these, the application of HLUs
alone is not sufficient to implement universal quantum
computation and some structuring of the qwire is typically
required, e.g., two or three types of cells in the q wire. Our
hybrid approach using HLUs and end-system selective
addressing has a number of benefits over pure HLU com-
puting. We require no structuring of the q wire while the
use of robust composite pulses [24] can greatly reduce the
effects of any static variations in the intersystem coupling
strengths. Finally, to our knowledge, no fault tolerant
quantum error correction scheme has been found for pure
HLU quantum computation. It is our hope that such a
scheme might be more feasible in our hybrid design. It
may be that such qwires could comprise both the computa-
tional and communication resources within a quantum
processor and possibly lead to greater simplifications in
the required technology.

State transfer and Ising interactions.—The simplest ap-
proach to state transfer in a q wire is to simply swap qubits
in neighboring locations, repeating the process on alternat-
ing pairs of qubits until the desired state has reached the
end of the q wire, at which point no further swaps are per-
formed. Building on this idea we follow the steps outlined
in Fig. 1 to arrive at the circuit (f), which transports un-
known state jq1i using simultaneously applied Hadamard
operations �H �

QN
j�1 H

j, and controlled phase operations

CZ�
QN�1
j�1 CZ

j;j�1. Complete transport through an
N-system q wire with the initial state jq1 � 0� 0 � � �i
requires the application of CZ � � �H � CZ�N�1 global opera-
tions. From (f) it would appear that such transport will
require the very particular initial state jq1q2q3 � � � qNi �
jq1 � 0 � � �i, where qa, a � 2; . . . ; N are the j � �0�i, pure
states alternately. However, this is not the case as we show
below and any initial state of these other systems will
suffice (even completely mixed states).

The execution of (f) in Fig. 1 requires the application of
the global pulses �H and CZ. We have assumed that the
interior q-wire systems are identical and �H is generated via
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the single-qubit operations on the degenerate interior sys-
tems with selective application of Hadamards simulta-
neously on the end systems (Note: typically interior and
end systems will possess different resonant frequencies due
to their difference in neighbor interactions.) To execute
CZ, we assume a uniform Ising interaction between all
q-wire systems. Similar to the Hadamard global operation,
we find that the execution of CZ consists of natural evolu-
tion under the Ising Hamiltonian together with single-qubit
operations which are uniform across the q wire except at
the end systems. Allowing the uniform interaction HIsing �

J
Pn�1
a�1 �

a
z�

a�1
z , to run for t � �@

4J , we obtain UIsing �

exp��i �4
P
��a�z �

�a�1�
z �. We can expand an individual

CZa;b � 1
2 �I � �

a
z � �

b
z � �

a
z�

b
z �, and using this we can

expand the full CZ �
QN�1
a�1 CZ

a;a�1 �
QN�1
a�1

1
2 �I � �

a
z �

�a�1
z � �az�

a�1
z �. The generating Hamiltonian for this

transformation is H � @g
Pn�1
a�1

1���a�z
2

1���a�1�
z

2 . This can
be expanded and using UIsing, we see that

 

CZ � exp
�
�i

�
4
���1�z � �

�N�
z �

��Y
exp

�
i
�
2
��a�z

��
UIsing

� R�1�z

�
�
4

�
R�N�z

�
�
4

��Y
R�a�z

�
�
�
2

��
UIsing; (1)

where R�a�z ��� is a z rotation, performed on the system at
position a. The single-qubit operations in (1) consist of a
��=2 homogenous zrotation on each q-wire system ex-
cept for the end systems which have additional �=4 z
rotations (via selective pulses). Since these z rotations
commute withUIsing, we can choose to execute them either
before or after the Ising interaction. A magnetic field along
the z axis could be used to perform the rotations while the
Ising interaction is running; however, this may not be
optimal and we can choose to wrap these z rotations in
with the following �H global operation (except for the last
application of the CZ, where these rotations must either
be executed or passed on to the next computational ele-
ment following the q-wire transmission). The evolution

in (f) consists of repetitions of �H � CZ. Setting CZ �QN
a�1 e

i�a�
�a�
z UIsing, where �a � �=4, a � 1, N, or �a �

�=2, a � 1, N and noting that H�zH � �x, and HH � I,
we have

 

�H � CZ �
�YN
a�1

ei�a�
a
x

�
�HUIsing:

We now use�iH � exp��i��x� exp��i�=2�y� to obtain

 

�H � CZ �
�
��i�N

YN
a�1

ei�a�
�a�
x e�i�=2��a�y

�
UIsing;

where �a � �3�=4, a � 1, N and �a � ��=2, a � 1,
N. Thus the combination of a homogenous application of
CZ gates on neighboring sites on the wire, together with an
ensuing application of local Hadamard gates on all sites,
can be generated via the standard Ising interaction fol-
lowed by ‘‘bang-bang’’ type homogenous local operations
on each qubit (apart from two �x operations applied at the
end sites—which we assume can be selectively addressed
apart from the bulk of the wire). Thus the perfect transport
circuit of Fig. 1(f) requires only global addressing of the q
wire, an Ising interaction which is uniform along the qwire
and selective manipulation of the q-wire end systems.

Perfect quantum mirrors.—The above perfect transport
seems to depend having the particular initial state
jq1 � 0 � � �i. Although this state allowed us to easily derive
the transport circuit in Fig. 1(f), it is not necessary as the
total operation S � � �H � CZ�N�1 constitutes a perfect
quantum mirror which reverses the spatial location of
any quantum information encoded on the q wire. To see
this we take, with no loss in generality, the initial state of
an N-system q wire to be in a pure product state with
j iinit 	 � � � � jqki � , where any pure state of the kth
system can be expressed as jqki��kj0ik��kj1ik���k�
�k�

�k�
x �j0ik. To prove mirror transport it suffices to prove

mirror transport of the initial state operations, i.e., S��k�x �
��N�k�1�
x S (and similarly for ��a�z ). To prove these identi-

ties we make use of the following rules for propagating
these operators through the global operations CZ and �H:

FIG. 1 (color online). We derive the network for globally
controlled, perfect state transfer via several relatively simple
steps. (a) A SWAP-gate, (b) same but with only jq1i to SWAP.
Using CNOTa;b�HbCZa;bHb�, where CZ is the �=2 phase gate,
we arrive at (c), and recoding the known input state j0i ! j�i,
we have (d). (e) Chaining these operations together to perfectly
transport an unknown state. (f) The input qubits jq1q2 � � �qni �
j � � � � ��i are obtained via the input state j � 0 � � ��i, and
homogenous applications of Hadamard and CZ.
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 CZ��a�z � ��a�z CZ; CZ��1�x � ��1�x �
�2�
z CZ;

 CZ��N�x ��
�N�1�
z ��N�x CZ;

CZ��a�x ��
�a�1�
z ��a�x �

�a�1�
z CZ; �H��a�z ��

�a�
x �H:

(2)

Using these rules one can follow the propagation of��a�x (or
��a�z ), through the global operations, e.g., � �H � CZ�2��5�x �
��3�x �

�4�
z �

�5�
x �

�6�
z �

�7�
x � �H � CZ�2. The propagation can be

more easily understood through a graphical representation
[see Fig. 2(a)]. Using these rules and the graphical repre-
sentation one can show S��a�x � ��N�a�1�

x S, S��a�z �
��N�a�1�
z S. We see from Fig. 2(a) that the propagation

typically undergoes a period of expansion until the pattern
hits the nearest q-wire end. It then continues to expand in
the other direction while remaining ‘‘stuck’’ at the end it
has impacted. Following two applications of �H � CZ after
impact the pattern reflects off this nearest wire end and
then the process of impact, sticking, and reflection repeats
off the other end of the q wire. Following N � 1 applica-
tions of clocking operation, �H � CZ, the initial product
state of the q wire undergoes a perfect spatial inversion
about the wire’s midpoint and consequently the inversion
of any initial state of the q wire occurs after a full cycle of
S � � �H � CZ�N�1 operations. The construction of perfect
quantum mirror transport using only global operations
may need only modest technological developments to be-
come possible in the near future in a variety of physical
implementations.

Single-qubit gates.—Besides quantum transport we
show how a q wire can perform universal quantum com-
putation. We make full use of the capability to separately
manipulate the ends of the q wire. We refer back to
Fig. 2(a) and we note that the pattern resulting from a
single-qubit operation acting on the initial state impacts a
horizontal edge of this pattern in a series of four cells. To
arrange that these edge qubit patterns do not overlap we
now assume an initially padded qubit register, i.e., j iinit �
jq1 � q2 � q3 � � � �i. To execute universal quantum logic
we demonstrate single- and two-qubit gates. To achieve the
former, the execution of a general qubit rotation,
U�a���;�; 	� � Rz���Ry���Rz�	�, on any qubit qa, we
use three full mirror cycles of S. During the first cycle,
to execute Rz�	�, on qa, we apply this single-qubit opera-
tion on an edge at the impact points L�a�i , in Fig. 2(b).
Following one round of S, which leaves the qubit register
spatially reversed along the q wire, we apply the global
operation �Hy �

QN
a�1 Hy, whereHy � R�a�x ��=2�. We then

apply a second round of S, and during this apply Rz��� (at
L�a�i ). Following this second round of S we globally apply
�Hy and using HyR

�a�
z ���Hy � R�a�y ���, we see that Ry��� is

executed on qa. In the third round of S, we again apply
Rz��� (at L�a�i ) to arrive at U�a���;�; 	�. Following from
the fact that adjacent qubit patterns do not overlap when

they impact an end (due to our use of buffer states), we can
pipeline the above single-qubit operation and are able to
execute

QN
a�1 U

�a���a; �a; 	a�, i.e., arbitrary single-qubit
operations on all qubits encoded within the q wire, using
three rounds of S, using edge operations and global �Hy.

Two-qubit gates.—To execute two-qubit gates we utilize
the end-system control to apply decoupling pulses selec-
tively to either end system but more simply one can apply a
Rx��=2� pulse to the end spin midway through the Ising
gate to average out the Ising interaction completely, or use
selective pulses to move an end-system qubit to an ‘‘off-
line’’ storage memory using techniques such as those
recently demonstrated in a nitrogen-vacancy-13C coupled
system [25]. By decoupling off an end system we artifi-
cially shorten the q wire and by continuing to apply the
global operations �H � CZ, (while omitting the Hadamard
on the decoupled end site), we can cycle the remaining

FIG. 2 (color online). Method of executing single- and two-
qubit gates. (a) Mirror transport of the local unitary operations X
(red), and Z (blue), acting on jq5i. The global pulses are CZ
(green vertical bars), and �H (purple vertical bars). (b) To execute
single-qubit gates on jq4i we apply �z operations on the ends at
the times L�5�1 ; . . . ; L�5�4 . (c) Two-qubit gate between control
jqci � jq1i, and target jqti � jq7i. Colored overlays blue (red)
are the transport patterns of an initial X on jq1i (jq7i).
Underlying pattern is the simultaneous transport of both where
the jq1i trap is on during the indicated period (shown in light
blue). The jq1i pattern moves along the bottom edge of the graph
(c) until it reaches time step m, where the trap is turned off. At m
the target pattern begins to impact the trapped pattern and when
this occurs we globally apply CZ � CZ but lift off the trap at the
end site for a short time to yield a CZ
�� � diag �1; 1; 1; ei��, or a
controlled phase gate between the two patterns. At time kwe can
either reverse the temporal order of the global operations or
continue forward, retrapping the control pattern to execute a
number of controlled phase gates targeting any qubit pattern
which impacts that trapped pattern.

PRL 97, 090502 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
1 SEPTEMBER 2006

090502-3



qubits within this shortened q wire. Since we are unable to
apply the local R�N�1�

z ���=4� necessary to complete CZ
on the shortened q wire, an unwanted R�N�1�

z ��=4� is
introduced each time we CZ.

To execute a control-phase gate on qubit jqti, controlled
by the state of jqci, both encoded in different spatial sites
within the qwire, we wait until the X pattern from jqci im-
pacts an end of the q wire whereupon we apply a decou-
pling pulse sequence to trap this X pattern at the end of the
q wire. The target qubit pattern will cycle forward and will
reach a configuration where it commences to impact the
trapped X pattern from jqci [see Fig. 2(c)]. Then, instead of
CZ � �H � CZ, we apply the Ising interaction for a time
period 
2�, to yield CZ � CZ on all systems within the q
wire, while lifting the decoupling of the end system for a
time 
� � 
2� � ��=2��, during this global operation. The
result of this is to execute the identity operation on all
qubits within the q-wire bar, the end-system qubit, and its
immediate neighbor which suffer a control-� operation and
along with a R�N�1�

z 
��� ��=4�. All the operations up to
this point, except for the control � and its R�N�1�

z 
���
��=4�, will later be reversed, and so we can tolerate the
additional rotations as long as they commute with the
control-� operator between the last two qubits.

As rotations introduced at the edge of the chain propa-
gate away from the edge, only the R�N�1�

z ���=4� intro-
duced with the final CZ prior to the controlled-� gate does
not commute with it. To overcome this, we apply a global
Rz��=4�, cancelling the rotation on qubit N � 1, but intro-
ducing rotations on qubits 1:::�N � 2�. Clearly, these com-
mute with the controlled-� gate between the last two
qubits.

We now wish to undo everything except the controlled-�
gate, to return to the initial state where now j~qci � j~qti �
R�t�z 
��� ��=4�CZ
��jqci � jqti, and where CZ
�� �
diag �1; 1; 1; ei��. This can be done by applying, in reverse
order, the inverse of each gate used to reach this point. �H
and CZ are, obviously, their own inverses, and Rz���=4�
is the inverse of the global Rz��=4�. It is important to note,
however, that CZD, the result of applying CZ with the end-
system qubit decoupled, is not its own inverse. This re-
quires us to use CZ0D � R�1�z �� �

4�

Q
R�a�z ��2��U

3
Ising instead

of CZD when reversing the trapping sequence. This will
remove any unwanted rotations introduced by not correct-
ing the extra R�N�1�

z ��=4� caused at each CZD.
However, more usefully, instead of reversing the tempo-

ral order of the global pulses we reverse only as far as the
global Rz��=4� before continuing forward in the cycling
evolution of the q-wire patterns, while still keeping the end
system trapped to repeat the execution of a further CZ
�2�,
on another target qubit. Continuing in this fashion we can
execute CZ
�1; �2; � � � ; �n�1�jqc; qt1; q

t
2; � � � q

t
n�1i, for a q

wire encoding n qubits. At the end of a full cycle we
release the trap and return the control qubit back to its
original spatial location in the q wire. This multitarget

2-qubit gate can provide significant savings when it comes
to executing more complicated quantum circuits such as
the quantum fast Fourier transform.

Quantum fast Fourier transform.—The quantum Fourier
can be written as QFT � HNWN�1HN�1 . . .W2H2W1H1,
where Wx � j0xih0xj � I � j1xih1xj �

Q
j�xWj with Wj �

Rj��=2j�x� for j > x and Wj � Ij otherwise. Clearly, Wx

is composed of N � x individual controlled phase
(CPHASE) gates. Thus the quantum Fourier transform can
be constructed using �N � 2��N � 1�=2 controlled phase
gates and N Hadamard gates. As has been shown earlier,
arbitrary CPHASEs (CZ
��) can be easily implemented in
this scheme. Furthermore, all the CPHASE gates controlled
by a particular qubit can be performed in at most a single
mirroring cycle of the system. Thus, each Wx term takes
only a single mirror cycle. The corresponding Hadamard
gate can also be performed during this cycle, reducing the
time required to perform a QFT to only N-1 mirror cycles
of the system.
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