Discovery of ¹⁰⁹Xe and ¹⁰⁵Te: Superallowed α Decay near Doubly Magic ¹⁰⁰Sn

S. N. Liddick,¹ R. Grzywacz,^{2,3} C. Mazzocchi,² R. D. Page,⁴ K. P. Rykaczewski,³ J. C. Batchelder,¹ C. R. Bingham,^{2,3}

I. G. Darby,⁴ G. Drafta,² C. Goodin,⁵ C. J. Gross,³ J. H. Hamilton,⁵ A. A. Hecht,⁶ J. K. Hwang,⁵ S. Ilyushkin,⁷ D. T. Joss,⁴ A. Korgul,^{2,5,8,9} W. Królas,^{9,10} K. Lagergren,⁹ K. Li,⁵ M. N. Tantawy,² J. Thomson,⁴ and J. A. Winger^{1,7,9}

¹UNIRIB, Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831, USA

²Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

⁴Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom

⁵Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

⁶Department of Chemistry, University of Maryland, College Park, Maryland 20742, USA

Department of Physics and Astronomy, Mississippi State, Mississippi 39762, USA

⁸Institute of Experimental Physics, Warsaw University, Warszawa, PL 00-681, Poland

⁹Joint Institute for Heavy-Ion Research, Oak Ridge, Tennessee 37831, USA

¹⁰Institute of Nuclear Physics, Polish Academy of Sciences, PL 31-342 Kraków, Poland

(Received 16 May 2006; revised manuscript received 23 June 2006; published 21 August 2006)

Two new α emitters ¹⁰⁹Xe and ¹⁰⁵Te were identified through the observation of the ¹⁰⁹Xe \rightarrow ¹⁰⁵Te \rightarrow ¹⁰¹Sn α -decay chain. The ¹⁰⁹Xe nuclei were produced in the fusion-evaporation reaction 54 Fe(58 Ni, 3n) 109 Xe and studied using the Recoil Mass Spectrometer at the Holifield Radioactive Ion Beam Facility. Two transitions at $E_{\alpha} = 4062 \pm 7$ keV and $E_{\alpha} = 3918 \pm 9$ keV were interpreted as the beam rate inty. Two datasets at D_{α}^{-1} to 2^{-1} is the value D_{α}^{-1} (5) to 2^{-1} is the value interpreted as the l = 2 and l = 0 transitions from the $7/2^+$ ground state in ¹⁰⁹Xe ($T_{1/2} = 13 \pm 2$ ms) to the $5/2^+$ ground state and a $7/2^+$ excited state, located at 150 ± 13 keV in ¹⁰⁵Te. The observation of the subsequent decay of ¹⁰⁵Te marks the discovery of the lightest known α -decaying nucleus. The measured transition energy $E_{\alpha} = 4703 \pm 5$ keV and half-life $T_{1/2} = 620 \pm 70$ ns were used to determine the reduced α -decay width δ^2 . The ratio $\delta^2_{10^5\text{Te}}/\delta^2_{21^3\text{Po}}$ of ~ 3 indicates a superallowed character of the α emission from ¹⁰⁵Te.

DOI: 10.1103/PhysRevLett.97.082501

PACS numbers: 23.60.+e, 21.10.Dr, 21.10.Pc, 27.60.+j

Alpha decay has long proven to be a useful tool to investigate the low-energy structure of neutron-deficient nuclides near magic shell closures [1]. The presence of an island of α emission in the neutron-deficient Sn region provided initial evidence that the N, Z = 50 shell closures apply to 100 Sn (e.g., [2,3]). In the classical Gamow picture, α decay occurs through the preformation of an α particle in the nucleus and its subsequent tunneling through Coulomb and centrifugal barriers [4]. Close to the N = Zline, above ¹⁰⁰Sn, protons and neutrons are expected to occupy identical orbitals. This may result in an enhancement of the preformation probability of an α particle within the nucleus and the development of so-called superallowed α decay [2].

The low-energy structure of nuclei around doubly magic ¹⁰⁰Sn provides a benchmark for the development and interpretation of shell structure models. Significant recent work has been devoted to elucidate the single-particle structure around ¹⁰⁰Sn (e.g., Refs. [5-8]). While a shellmodel description of the odd-mass Sn, Te, and Xe isotopes requires knowledge of five single-particle energies ($\nu d_{5/2}$, $\nu g_{7/2}, \nu s_{1/2}, \nu d_{3/2}, \nu h_{11/2}$), the energy separation between the lowest single-particle states $\nu d_{5/2}$ and $\nu g_{7/2}$ is of particular importance for the low-energy structure in these nuclei and yet they have not been measured. There are numerous theoretical estimates for the $\nu g_{7/2}$ - $\nu d_{5/2}$ energy separation which range from -0.05 to 1.9 MeV ([9,10], and references therein). Experiments performed in this region investigating the low-energy structure of the Sn, Te, and Xe isotopes suggest that the $\nu g_{7/2}$ - $\nu d_{5/2}$ energy separation is below 0.3 MeV [5-9,11-14]. Experimental efforts are needed to improve this constraint and ultimately identify the low-energy excited states in ¹⁰¹Sn. Further interest in the decay rates of nuclei around ¹⁰⁰Sn comes from the study of astrophysical processes, for which this region has been cited as the end of the rapid proton capture process due to the Sn-Sb-Te cycle [15].

The development of new experimental techniques has continually increased the number of nuclei that are accessible for spectroscopic study [5,6,16]. However, despite many experimental efforts [17,18], new neutron-deficient isotopes of Xe and Te have not been observed since the discovery of ¹¹⁰Xe and ¹⁰⁶Te over 25 years ago [19]. The current work focuses on the first identification of ¹⁰⁹Xe and ¹⁰⁵Te through the observation of their α -decay chain. This marks the closest approach to the N = Z line above ¹⁰⁰Sn and provides an opportunity to search for superallowed α decay and extends the $5/2^+$ and $7/2^+$ level systematics to ¹⁰⁵Te.

¹⁰⁹Xe nuclei were produced in The the 54 Fe(58 Ni, 3n) 109 Xe fusion-evaporation reaction with beam energies between 220 and 225 MeV on a 470 μ g/cm² thick ⁵⁴Fe target. Mass 109 reaction products were separated according to the ratio between atomic mass

0031-9007/06/97(8)/082501(4)

and ionic charge using the Holifield Radioactive Ion Beam Facility Recoil Mass Spectrometer [20]. The separated beam passed through the mylar foil of a high efficiency microchannel plate counter, a 0.15 mg/cm² thick Al degrader, and implanted with ~ 60 MeV into a 40 mm \times 40 mm \times 66 μ m double-sided silicon strip detector (DSSD) with 1-mm wide strips. The DSSD and all ancillary detectors were read out by digital electronics [21]. To ensure that the sequential 109 Xe and 105 Te α decays (time difference of only hundreds of nanoseconds) were correctly recorded, a novel acquisition mode was developed. If a preamplifier signal was beyond a preset threshold, \sim 9.2 MeV, it was considered to be an implanted ion and the energy and time of the event were recorded. This limit was chosen to exceed the expected sum of the ¹⁰⁹Xe and ¹⁰⁵Te α energies. If a signal was below this limit, 25 μ s of the pulse shape (trace) was recorded starting 1 μ s before the leading edge. Examples of traces for the $^{109}Xe \rightarrow$ $^{105}\text{Te} \rightarrow ^{101}\text{Sn} \alpha$ -decay chain are shown in Fig. 1. The ability to identify two α particles closely spaced in time, milliseconds after the correlated ion implantation into the DSSD, demonstrates an advantage of digital electronics.

A total of 100 α - α decay events were attributed to the $^{109}\text{Xe} \rightarrow ^{105}\text{Te} \rightarrow ^{101}\text{Sn}$ decay chain. The maximum time allowed between an implant and correlated decay events in the same DSSD pixel was limited to 200 ms. The energy calibration was obtained from known ^{109}Te and $^{108}\text{Te} \alpha$ lines. The ^{108}Te resulted from the proton decay of ^{109}I .

The α energy spectra for ¹⁰⁹Xe and ¹⁰⁵Te are shown in Figs. 2(a) and 2(b). The energies of the two α transitions from ¹⁰⁹Xe are 3918 ± 9 and 4062 ± 7 keV. After decay-recoil energy correction the Q_{α} for the two transitions are 4067 ± 10 and 4217 ± 8 keV, respectively, leading to an energy of 150 ± 13 keV for the excited state in ¹⁰⁵Te. The

 α branching ratios to the excited and ground states of ¹⁰⁵Te are $(30 \pm 6)\%$ and $(70 \pm 6)\%$, respectively, assuming all ¹⁰⁹Xe decays proceed through α emission. The energy of the ¹⁰⁵Te α line is 4703 ± 5 keV, leading to Q_{α} of 4889 ± 6 keV. No fine structure was observed in the ¹⁰⁵Te α decay, but a 5% limit can be placed on the branching ratio of the decay to an excited state in ¹⁰¹Sn.

The time distribution for the ¹⁰⁹Xe decay is shown on a logarithmic time axis in Fig. 2(c) constructed from the time difference between an implant in the DSSD and a subsequent correlated ¹⁰⁹Xe α decay. Using the method of Ref. [22] the half-life of ¹⁰⁹Xe is 13 ± 2 ms. The half-lives of the low and high energy α transitions from ¹⁰⁹Xe are 10 ± 3 ms and 15 ± 3 ms, respectively. The time distribution for ¹⁰⁵Te was derived by histogramming the time differences obtained from a fit to the ¹⁰⁹Xe-¹⁰⁵Te double α traces. As the time between the two α pulses decreases, it becomes increasingly difficult for the analysis algorithm to identify the signal as a double pulse. The efficiency for identifying double pulses decreases at time differences below 0.5 μ s, though the algorithm is still sensitive to time differences as low as 0.25 μ s. The half-life of ¹⁰⁵Te is 620 \pm 70 ns.

FIG. 1. Part of a signal trace, from 0.5 to 2.0 μ s, recorded for a 109 Xe $\rightarrow ^{105}$ Te $\rightarrow ^{101}$ Sn α -decay chain event. The time difference between the 109 Xe and 105 Te α particles is 275 ns, and traces from both the front (black line) and back (gray line) strips of the DSSD are shown.

FIG. 2. Energy spectra from 3500 to 5250 keV for the α decay of (a) ¹⁰⁹Xe and (b) ¹⁰⁵Te. (c) Decay spectrum for ¹⁰⁹Xe and ¹⁰⁵Te on a logarithmic time axis and fit according to the method described in Ref. [22]. Only times above 0.5 μ s were used in the ¹⁰⁵Te half-life fit, which is indicated by the solid line.

The ground state spin and parity of ¹⁰¹Sn was previously suggested to be $5/2^+$, arising from the $\nu d_{5/2}$ orbital [11]. The observation of only one α transition between ¹⁰⁵Te and ¹⁰¹Sn suggests that the ground state of ¹⁰⁵Te is $I^{\pi} =$ $5/2^+$. A large α branch from ¹⁰⁹Xe to the excited state in ¹⁰⁵Te is interpreted as a result of the l = 0 character of the α transition which compensates for the decreased α energy compared to the higher energy l = 2 transition to the ground state. Thus the ground state of 109 Xe and the excited state of ¹⁰⁵Te are both tentatively assigned as $I^{\pi} = 7/2^+$ states, resulting in the decay scheme presented in Fig. 3. The spin and parity deduced for the ground state of ¹⁰⁹Xe agree with those proposed for the 111 Xe ground state [7] where in both cases excited levels have not been identified. The current results for ¹⁰⁹Xe are also consistent with the observation of fine structure in the α decay of ¹¹¹Xe to the tentative $5/2^+$ ground and $7/2^+$ first excited state in ¹⁰⁷Te [12]. The ordering of the ground and excited state in 105 Te agree systematically with those in the heavier ^{107,109,111}Te isotopes [7,13]. The $5/2^+$ and $7/2^+$ states in ^{109,111}Te have been identified as predominately having $\nu d_{5/2}$ and $\nu g_{7/2}$ parentage [13, 14].

The Q_{α} values as a function of proton number are shown in Fig. 4(a) for nuclei in the ¹⁰⁰Sn and ²⁰⁸Pb regions [23]. The expected increase in Q_{α} approaching doubly magic ¹⁰⁰Sn is observed in the new data for ¹⁰⁹Xe and ¹⁰⁵Te. In Fig. 4(b) the Q_{α} values for the Te and Xe isotopes are shown. When the odd- and even-mass isotopes are considered separately, there is an apparent linear trend between the neutron number and the Q_{α} value. If this systematic trend of the Q_{α} values is extended, Q_{α} for ¹⁰⁴Te can be expected to be greater than 5 MeV.

The reduced α -decay width δ^2 can be calculated using the tunneling probability *P* of an α particle through the potential barrier, using the WKB approximation, and the partial α -decay rate λ_{α} for a given transition, $\delta^2 = \lambda_{\alpha} h/P$. The reduced α -decay widths relative to ²¹²Po ($W_{\alpha} = \delta^2/\delta_{212Po}^2$) [16] for all three observed α transitions are

FIG. 3. Alpha decay scheme for the ${}^{109}\text{Xe} \rightarrow {}^{105}\text{Te} \rightarrow {}^{101}\text{Sn}$ decay chain. Figure is not to scale. See text for uncertainties on half-lives, energies, branching ratios, and W_{α} .

given in Fig. 3. The nucleus ²¹²Po is used as a reference for δ^2 values due to its simple nuclear structure; it may be pictured as an α cluster outside the doubly magic ²⁰⁸Pb core [24]. The W_{α} values for the two ¹⁰⁹Xe transitions are 0.9 ± 0.3 to the ¹⁰⁵Te ground state and 0.8 ± 0.2 to the excited state. These widths should be considered upper limits since no consideration was given to other decay modes such as a small β branch (estimated as 4% assuming a $T_{1/2}^{\beta}$ of 368 ms [25]). The W_{α} of the ¹⁰⁵Te transition is 2.0 ± 0.3 . The difference between W_{α} for ¹⁰⁹Xe and ¹⁰⁵Te is not unexpected, as mixing between single-particle states becomes more pronounced away from the doubly magic ¹⁰⁰Sn.

When protons and neutrons occupy identical orbitals, the result may be an enhancement of the α preformation factor S, which is proportional to the α -decay width (S = $\delta^2/\nu h$, where ν is the frequency at which the α particle encounters the Coulomb barrier). A large increase in the preformation factor is expected to lead to superallowed α decay [3]. The W_{α} values for the lightest Te isotopes are compared to Po nuclei [23,26] with similar valence structure in Table I. An enhancement of 2.7 ± 0.7 is observed in the relative width of ¹⁰⁵Te compared to ²¹³Po, and it is apparent that the enhancement of α -decay widths is increasing as mass decreases suggesting that the $^{104}\text{Te} \rightarrow$ ¹⁰⁰Sn transition is the best candidate for superallowed α decay. Additionally, the enhancements for both ¹⁰⁵Te and ¹⁰⁶Te are consistent. However, since only two points are shown for odd and even masses it is difficult to determine how quickly the enhancement increases. Thus, a lower limit of the enhancement expected in ¹⁰⁴Te is taken to be 3. Combined with the extrapolated ¹⁰⁴Te Q_{α} an upper limit for the half-life of 100 ns for the α decay of ¹⁰⁴Te is

FIG. 4. (a) Q_{α} as a function of proton number for the different α decay chains in the ¹⁰⁰Sn and ²⁰⁸Pb regions [23]. The strong double shell closures at ¹⁰⁰Sn and ²⁰⁸Pb give rise to a peak in Q_{α} at proton numbers of 52 and 84, respectively. (b) Q_{α} for the ¹⁰⁰Sn region separated into even- and odd-mass α emitters.

TABLE I. W_{α} for isotopes in the Z = 50 and Z = 82 [23,26] regions. In each row are nuclei in the two different regions with corresponding valence structures with respect to the appropriate doubly magic core (either ¹⁰⁰Sn or ²⁰⁸Pb). The last column shows the enhancement of the W_{α} value.

Valence	Nuclide	W_{lpha}	Nuclide	W_{lpha}	$W^{ m Te}_{lpha}/W^{ m Po}_{lpha}$
α	¹⁰⁴ Te	3 ^a	²¹² Po	1.0	3 ^a
$\alpha + n$	¹⁰⁵ Te	2.0 ± 0.3	²¹³ Po	0.73 ± 0.14	2.7 ± 0.7
$\alpha + 2n$	¹⁰⁶ Te	4.63 ± 0.56	²¹⁴ Po	1.53 ± 0.02	3.02 ± 0.37
$\alpha + 3n$	¹⁰⁷ Te	1.45 ± 0.63	²¹⁵ Po	1.16 ± 0.01	1.25 ± 0.54
$\alpha + 4n$	¹⁰⁸ Te	2.19 ± 0.27	²¹⁶ Po	1.59 ± 0.01	1.38 ± 0.17

^aLower limit; see text for details.

deduced. The measurement of this half-life represents a significant experimental challenge but may still be feasible with the digital electronics used in our work.

An accurate understanding of nuclei around doubly magic ¹⁰⁰Sn requires a knowledge of single-particle energies, in particular, the energy separation between the $\nu d_{5/2}$ and $\nu g_{7/2}$ single-particle orbitals. Viewed from an extreme single-particle shell-model perspective, this energy separation can be extracted from the energy of the first excited state in ¹⁰¹Sn. The energy systematics of $5/2^+$ and $7/2^+$ states as a function of neutron number can be extended to ¹⁰⁵Te (see Fig. 5). The simultaneous break with systematic trends at N = 53 for both Sn and Te isotopes may suggest that the $7/2^+$ level is converging toward the single-particle energy separation between the $\nu d_{5/2}$ and $\nu g_{7/2}$ single-particle orbits. Although configuration mixing may influence the trends, one could expect the excited $7/2^+$ state in ¹⁰¹Sn to be around 160 keV.

In summary, the first identification of 109 Xe and 105 Te has been made through the detection of the α -decay chain

FIG. 5. Energy systematics of the $7/2^+$ level relative to the $5/2^+$ state for Te and Sn isotopes as a function of neutron number. Data were taken from the current work (heavy black line) and from Ref. [7] (and references therein).

¹⁰⁹Xe \rightarrow ¹⁰⁵Te \rightarrow ¹⁰¹Sn and marks the closest approach to the N = Z line above ¹⁰⁰Sn. The half-lives of the two α decays were determined to be 13 ± 2 ms and 620 ± 70 ns for ¹⁰⁹Xe and ¹⁰⁵Te, respectively. The Q_{α} values are 4067 ± 10 and 4217 ± 8 keV for the α transitions from ¹⁰⁹Xe and 4889 ± 6 keV for the ¹⁰⁵Te α decay. The observed enhancement between the W_{α} for ¹⁰⁵Te and the analogous ²¹³Po indicates the superallowed character of the α decay of ¹⁰⁵Te. Fine structure was observed in the α decay of ¹⁰⁹Xe \rightarrow ¹⁰⁵Te placing the energy difference between the tentatively assigned 5/2⁺ ground state and 7/2⁺ excited state at 150 ± 13 keV. Further experiments are anticipated to measure both the fine structure in the ¹⁰⁵Te α decay to ¹⁰¹Sn and attempt to measure the α -decay chain ¹⁰⁸Xe \rightarrow ¹⁰⁴Te \rightarrow ¹⁰⁰Sn.

This work was supported in part by the UNIRIB consortium and under U.S. DOE Grants No. DE-AC05-060R23100 (ORAU), No. DE-FG02-96ER40983 (UT), No. DE-AC05-000R22725 (ORNL), No. DE-FG02-96ER-41006 (MississippiSU), and No. DE-FG05-88ER40407 (Vanderbilt), and the U.K. Engineering and Physical Sciences Research Council.

Note added in proof.— 105 Te has been independently identified by Seweryniak *et al.* [27].

- [1] A. Andreyev et al., Nature (London) 405, 430 (2000).
- [2] R. D. Macfarlane and A. Siivola, Phys. Rev. Lett. 14, 114 (1965).
- [3] E. Roeckl, Radiochimica Acta 70/71, 107 (1995).
- [4] G. Gamow, Z. Phys. 51, 204 (1928).
- [5] C. Fahlander et al., Phys. Rev. C 63, 021307(R) (2001).
- [6] D. Seweryniak et al., Phys. Rev. C 66, 051307(R) (2002).
- [7] B. Hadinia et al., Phys. Rev. C 70, 064314 (2004).
- [8] H. Grawe et al., Eur. Phys. J. A 27, 257 (2006).
- [9] J. Ressler et al., Phys. Rev. C 65, 044330 (2002).
- [10] B.A. Brown et al., Phys. Rev. C 50, R2270 (1994).
- [11] O. Kavatsyuk et al., GSI Report 2006-1 (to be published).
- [12] D. Schardt et al., Nucl. Phys. A326, 65 (1979).
- [13] Zs. Dombrádi et al., Phys. Rev. C 51, 2394 (1995).
- [14] K. Starosta et al., Phys. Rev. C 61, 034308 (2000).
- [15] H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).
- [16] Z. Janas et al., Eur. Phys. J. A 23, 197 (2005).
- [17] C. Mazzocchi et al., Phys. Lett. B 532, 29 (2002).
- [18] A. Hecht et al., AIP Conf. Proc. 819, 355 (2006).
- [19] D. Schardt et al., Nucl. Phys. A368, 153 (1981).
- [20] C. J. Gross *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **450**, 12 (2000).
- [21] R. Grzywacz, Nucl. Instrum. Methods Phys. Res., Sect. B 204, 649 (2003).
- [22] K.-H. Schmidt et al., Z. Phys. A 316, 19 (1984).
- [23] G. Audi et al., Nucl. Phys. A729, 337 (2003).
- [24] K. Varga et al., Phys. Rev. Lett. 69, 37 (1992).
- [25] P. Möller et al., At. Data Nucl. Data Tables 66, 131 (1997).
- [26] G. Audi et al., Nucl. Phys. A729, 3 (2003).
- [27] D. Seweryniak et al., Phys. Rev. C 73, 061301(R) (2006).