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Using lepton-pair production in hadron-hadron collisions as an example, we explore the relation
between two well-known mechanisms for single-transverse-spin asymmetries in hard processes: twist-
three quark-gluon correlations when the pair’s transverse momentum is large, q? � �QCD, and time-
reversal-odd and transverse-momentum-dependent parton distributions when q? is much less than the
pair’s mass. We find that, although the two mechanisms each have their own domain of validity, they
describe the same physics in the kinematic region where they overlap. This unifies the two mechanisms
and imposes an important constraint on phenomenological studies.
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I. Introduction.—When two objects collide, one with
spin and another without, the result most likely depends
on the direction of the spin. In high-energy scattering of
two hadrons (protons, for instance), when one of them
has a nonzero transverse polarization, a strong spin de-
pendence has been observed since three decades ago
[1]. The physical quantity of interest is the so-called
single-transverse-spin asymmetry (SSA) AN � ���S?� �
���S?��=���S?� � ���S?��, defined as the ratio of the
difference and the sum of the cross sections when the spin
S? is flipped. SSAs in hadronic physics have attracted
much interest in recent years in both experiment and
theory, particularly after publication of data [2] by the
HERMES Collaboration at Deutsches Elektronen-
Synchrotron and the polarized Relativistic Heavy-Ion
Collider at Brookhaven National Laboratory coming into
operation. Although it was realized some time ago [3] that
perturbative quantum chromodynamics (QCD) can be used
to study the effects of transverse spin, the size of the
observed asymmetries came as a surprise and has posed a
challenge for researchers in this field [4].

Two mechanisms have been proposed in QCD to explain
the observed large size of SSAs. One follows the collinear
(CO) QCD factorization approach, attributing the SSAs to
spin-dependent twist-three quark-gluon correlation func-
tions and to a quantum interference between different
partonic scattering amplitudes [Efremov-Teryaev-Qiu-
Sterman (ETQS) mechanism] [5,6]. The other explicitly
connects the SSAs to spin dependence of the transverse
motions of quarks and gluons in a polarized proton and
expresses the SSAs in terms of time-reversal-odd (T-odd)
and transverse-momentum-dependent (TMD) parton dis-
tributions [7]. Much progress has been made in under-
standing the TMD parton distributions and their gauge
properties [8–13] and in establishing corresponding QCD
factorization formulas [8,9,14,15]. Both mechanisms have
been used in phenomenological studies of the available

data [6,16]. Recently, a relation between the two types of
parton distribution functions was derived [13,17], indicat-
ing a certain dynamical connection between the two
mechanisms. However, a clear relationship between the
two apparently different physical mechanisms, particularly
at the level of physical observables, was not established so
far. This will be achieved in this Letter.

In this Letter, we explore the connection between the
two mechanisms by studying the SSA in Drell-Yan had-
ronic lepton-pair production. We consider the scattering of
a transversely polarized proton of spin S? and momen-
tum P on an unpolarized hadron (another proton, for
example) of momentum P0, producing a virtual photon
that subsequently decays into a pair of leptons with invari-
ant mass Q, transverse momentum q?, and a positive
rapidity y (in the forward direction of the polarized pro-
ton). We calculate the spin-dependent differential cross
section d���S?�=dQ

2dyd2q?, with ���S?� � ���S?� �
���S?�	=2, for both mechanisms: the collinear QCD fac-
torization formalism in Sec. II and the TMD QCD facto-
rization formalism in Sec. III, respectively. The collinear
QCD factorization formalism for the SSAs works when
both q?; Q� �QCD, the strong interaction scale, and the
TMD QCD factorization formalism is valid when q? 

Q. Therefore, we expect that, in the common kinematic
region �QCD 
 q? 
 Q, the two mechanisms coincide
and, hence, describe the same physics. In Sec. IV, we
expand the spin-dependent cross section calculated in the
collinear QCD factorization formalism at small q?=Q and
find that the leading-order result in q?=Q is indeed the
same as that obtained within the TMD QCD factorization
formalism. This conclusion imposes a rigorous constraint
on phenomenological studies of the SSA data: If the data
can be described in both ways, the two mechanisms must
produce identical results.

II. Collinear QCD factorization.—When q?; Q�
�QCD, the parton momenta entering the hard scattering
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can be approximated to be parallel to either of the incom-
ing hadron’s light-cone momenta P� or P0� [the light-cone
components of a space-time vector v� are defined as v� �
�v0 � v3�=

���
2
p
; v? � �v1; v2�]. The lepton-pair yield is

proportional to the square of the scattering amplitude.
The latter is equal to a sum of all possible partonic scat-
tering amplitudes, including, for example, the antiquark-
quark annihilation in Fig. 1(a) and the same annihilation in
the presence of a polarized ‘‘color electromagnetic’’ field
(the gluon) in Fig. 1(b). The spin-dependent cross section
in the collinear approximation results mainly from a non-
vanishing quantum interference between the scattering
amplitudes in Figs. 1(a) and 1(b) [5,6]. At large y, it can
be calculated in terms of a twist-three quark-gluon corre-
lation, the shaded oval in the lower part of the diagram in
Fig. 1(c). The QCD expression for the correlation is [6]
 

TF�x1;x2��
Z d��d��

4�
ei�k

�
q1�

��k�g ������? S?�hPSj � �0�

�L�0;���	�gF�� ��
��L���;��� ����jPSi;

(1)

where x1 � k�q1=P
� and x2 � k�q2=P

� are the fractions of
the polarized proton’s light-cone momentum carried by the
quark in Fig. 1, while xg � k�g =P� � x2 � x1 is the frac-
tional momentum carried by the gluon. ���? is the two-
dimensional Levi-Civita tensor with �12

? � 1. In Eq. (1),  
and F are quark field and gluon field strength, respectively,
and L is a gauge link operator that makes the correlation
gauge invariant [6]. The spin dependence of this correla-
tion can be seen as follows: When a transversely polarized
proton is traveling at nearly the speed of light, its internal
color electric and magnetic fields have preferred orienta-
tions in the transverse plane. By parity invariance, the color
electric field must be orthogonal to the spin of the proton. If
averaged over the proton wave function, the field vanishes
because the proton is color-neutral (also because of time-
reversal symmetry). However, if one multiplies the color
electric field with the quark color current, the average may
be nonzero. This average defines a quark-gluon correlation
function, and its spin dependence characterizes a property
of a polarized proton.

A nonvanishing SSA requires the presence of a non-
trivial strong interaction phase, because it is proportional to
~S  ~p� ~q, which is odd under a naive time-reversal trans-
formation. For the ETQS mechanism, the phase arises from
the interference between the two scattering amplitudes in
Figs. 1(a) and 1(b). Already at the lowest nontrivial order
in the strong coupling constant, the amplitude with the
extra gluon in Fig. 1(b) may have an imaginary part. It is
generated by the poles (or on-shell conditions) of parton
propagators in the diagram, when the integration over the
gluon’s momentum xg is performed. If such a pole occurs
at xg � 0, it is called a ‘‘soft’’ (gluon) pole [6]; otherwise,
it is referred to as a ‘‘hard’’ pole [18,19].

Summing over all contributions by the leading-order
diagrams of the type shown in Fig. 1(c) and their complex
conjugates, we derive, within the collinear QCD factoriza-
tion, the spin-dependent cross section [19]
 

d3��q �q!	�g
CO �S?�

dQ2dyd2q?
�
Z dx

x
dx0

x0
�q�x0�
�ŝ� t̂� û�Q2�

� C
�

1

2Nc

��
x
@
@x
TF�x; x�

�Ds
q �q

�û

� TF�x; x�
Ns
q �q

�û

�
� TF�x; x� �xg�

�
Nh
q �q

�û

�
1

2Nc
� CF

ŝ
ŝ� û

��
; (2)

where the sum over all quark flavors, weighted with their
electric charge squared, is implicit. The factor C is
�0���S?�q?��s=2�2, with �0 � 4��2

em=3NcsQ2, Nc �
3, and s � �P� P0�2. x0 is the momentum fraction of the
unpolarized quark, and x is the total parton momentum
fraction from the polarized proton when xg is fixed using
the pole condition. The partonic Mandelstam variables are
defined as ŝ � �xP� x0P0�2, t̂ � �xP� q�2, and û �
�x0P0 � q�2. In Eq. (2), the terms proportional to TF�x; x�
and TF�x; x� �xg�, with �xg � �xt̂=�Q

2 � t̂�, correspond to
the soft and hard pole contributions, respectively. The
coefficients associated with them are Ds

q �q � û=t̂� t̂=û�
2Q2ŝ=�û t̂�, Ns

q �q � �Q
2�û2 � t̂2� � 2Q2ŝ�Q2 � 2t̂� �

�û2 � t̂2�t̂	=t̂2û, and Nh
q �q � ��Q

2 � t̂�3 �Q2ŝ2	=��t̂2û�.
In the real-photon limit Q2 � 0, the above result reduces
to the spin-dependent direct-photon cross section.

III. TMD QCD factorization.—When q? 
 Q, the ob-
served q? could be sensitive to the transverse momenta of
the scattering partons, while Q sets the scale of the hard
collision. The Drell-Yan cross section in leading order
q?=Q can then be factorized in terms of TMD quark
distributions. When an antiquark of the unpolarized proton
scatters off a quark with a nonvanishing transverse mo-
mentum k? from the polarized proton, the lepton-pair yield
is proportional to a spin-dependent TMD quark distribu-
tion q�x; k?; S?�, and the spin-dependent cross section is
then proportional to the difference q�x; k?; S?� �
q�x; k?;�S?�. This difference, after factoring out the ex-
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FIG. 1. Scattering amplitudes for Drell-Yan dilepton produc-
tion via (a) q� �q! 	� � g and (b) q� �q� g! 	� � g. (c) A
typical diagram, from the interference of the amplitudes in (a)
and (b), that gives a contribution to the SSA.
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plicit spin dependence, is defined to be a new spin-
dependent TMD quark distribution [19] qT�x; k?�, which
was originally proposed by Sivers [7] and is often referred
to as the ‘‘Sivers function.’’ It describes an asymmetric
dependence of the quark density on the relative orientation
of the quark transverse momentum ~k? and the direction of
the proton spin, and it may generate a nonvanishing SSA.
qT�x; k?� would vanish, however, without a gauge link
connecting the quark field to infinity [10–13] along a
certain direction v�, which is usually chosen to be off
the light cone to avoid light-cone singularities. The

gauge link, which is required by gauge invariance, de-
scribes the eikonal phase accumulated through the quark
propagation in the background field produced by gluons
moving collinear to the proton’s momentum. Thus, in the
TMD framework, the strong interaction phase required for
SSAs is already included in qT�x; k?�. Because of Lorentz
symmetry, the v dependence of the TMD distributions is of
the form �2 � �2v  P�2=v2 [8].

In terms of the qT�x; k?�, the spin-dependent Drell-Yan
cross section was shown to have the following TMD
factorization [14]:

 

d3��TMD�S?�

dQ2dyd2q?
� �0

���S?�q?�
MP

Z
d2 ~k1?d2 ~k2?d2 ~�?

~k1?  ~q?
~q2
?


�2�� ~k1? � ~k2? � ~�? � ~q?�qT�z1; k1?� �q�z2; k2?�

� �S��?���1H; (3)

where z1 � Q=
���
s
p
ey and z2 � Q=

���
s
p
e�y are the momen-

tum fractions of the colliding hadrons associated with the
observed lepton pair. H is a hard factor and is entirely
perturbative. �q is the TMD antiquark distribution of the
unpolarized proton. MP is a hadron mass, used to normal-
ize the qT and �q TMD distributions to the same mass
dimension. The soft factor S is a vacuum matrix element
of Wilson lines and captures the effects of soft gluon
radiation with a total transverse momentum �? [8].

In order to compare the two mechanisms for the SSAs,
we need to calculate the explicit q? dependence of the
TMD factorization in perturbative QCD in the region
�QCD 
 q? 
 Q. At leading order in q?=Q, the q?
dependence in Eq. (3) is approximately generated by a
sum of various contributions, each of which is represented
by one of the reduced diagrams shown in Fig. 2 [9]. This
factorization property can be pictured from the diagram in
Fig. 1(c) by considering the real gluon emitted along the
direction of either P or P0. For calculating each contribu-
tion in Fig. 2, we let one of the transverse momenta ~ki? and
~�? in the 
 function in Eq. (3) be of the order of ~q? and the
others small. When ~�? is large, for example, in Fig. 2(c),
we neglect the ~ki? in the 
 function. The integrations over
these momenta yield the ordinary antiquark distributionR
d2 ~k? �q�x; k?� � �q�x� and the diagonal part of the twist-

three quark-gluon correlation
R
d2 ~k?� ~k

2
?=MP�qT�x; k?� �

TF�x; x�, a relation first derived in Ref. [13] (where the qT
was referred to as f?1T). When one of the ~ki? is taken to be
of order ~q? and ~�? is neglected in the 
 function, we need
the normalization

R
d2 ~�?S��?� � 1.

What remains is to calculate the large-k? behavior of the
TMD distributions and the soft factor. When k? becomes
large, the leading contribution comes from perturbative
one-gluon exchanges. The soft factor at large k? has
been calculated to order �s in Ref. [14]. To the same order,
the unpolarized antiquark TMD distribution can be calcu-
lated from the top part of the diagram in Fig. 2(b),

 

�q�z2;k?�� �q�z2�
�2�� ~k?��
�s

2�2

1

~k2
?

CF
Z dx0
x0

�q�x0�

�

�
1��2

2

�1��2��
�
��2�1�

�
ln
z2

2�
2
2

~k2
?

�1
��
; (4)

where �2 � z2=x0 and where an additional contribution
involving the gluon distribution has been neglected [19].
The T-odd TMD distribution qT�x; k?� at large k? can be
calculated in terms of the twist-three quark-gluon correla-
tion from the bottom part of the diagram in Fig. 2(a):
 

qT�z1; k?� �
�s

4�2

2MP

� ~k2
?�

2

Z dx
x

�
A� CFTF�x; x�
��1 � 1�

�

�
ln
z2

1�
2
1

~k2
?

� 1
��
; (5)

where
 

A�
1

2Nc

��
x
@
@x
TF�x;x�

�
�1��2

1��TF�x;x� x̂g�
1��1

�1��1��

�TF�x;x�
�1��1�

2�2�1�1��2

�1��1��

�

�CFTF�x;x� x̂g�
1��1

�1��1��
; (6)

with x̂g � �1� �1�x and �1 � z1=x. This relation is new

++

(a () b () c)

FIG. 2 (color online). Decomposition of the generic diagram in
Fig. 1 into different regions in the transverse-momentum-
dependent factorization approach. The transverse momentum
of the Drell-Yan pair may come from (a) the Sivers function,
(b) the antiquark TMD distribution, and (c) the soft factor.
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and more general than the moment relation found in
Ref. [13].

Plugging the above TMD distributions at large k? into
Eq. (3), we obtain, in the TMD QCD factorization, the
spin-dependent cross section for the q� �q channel
 

d3��q �q!	�g
TMD �S?�

dQ2dyd2q?
�

C

�q2
?�

2

Z dx
x
dx0

x0
�q�x0�f
��2 � 1�A

� 
��1 � 1�Bg; (7)

where A and C have been given above and where B �
CFTF�x; x�f��1� �

2
2�=�1� �2��	 � 2
��2 � 1��

ln�Q2= ~q2
?�g, with �2 � z2=x0. As expected, the physical

cross section in Eq. (7) is independent of v and �2.
IV. Summary.—In order to compare the spin-dependent

cross sections in Eqs. (2) and (7), which we have calculated
for the two different mechanisms, in their common region
�QCD
q?
Q, we need to derive an asymptotic form of
the spin-dependent cross section in Eq. (2) when q? 
 Q.

At leading order in q?=Q, the partonic Mandelstam
variables in Eq. (2) become ŝ � ~q2

?=�1� �1��1� �2�, t̂ �
� ~q2

?=�1� �2�, and û � � ~q2
?=�1� �1�. Using the phase

space 
 function 
�ŝ� t̂� û�Q2� � �
��2 � 1�=�1�
�1�� � 
��1 � 1�=�1 � �2�� � 
��1 � 1�
��1 � 1� �
ln�Q2=q2

?�	, we find that the leading-order (in q?=Q)
expansion of the cross section in Eq. (2) indeed reproduces
Eq. (7):

 

d3��q �q!	�g
CO �S?�

dQ2dyd2q?

��������q?
Q
�
d3��q �q!	�g

TMD �S?�

dQ2dyd2q?
: (8)

The same conclusion applies to the contribution to the SSA
generated by gluon-quark scattering [19].

In summary, we have studied the single-transverse-spin
asymmetry in Drell-Yan lepton-pair production at both
large and small transverse momenta q? of the lepton
pair. At large q?, the spin-dependent cross section is
calculated in the collinear QCD factorization formalism
and expressed in terms of a twist-three quark-gluon corre-
lation function. At small q?, the cross section is given by a
factorization formula in terms of TMD parton distribu-
tions. We have demonstrated that, in the intermediate
region �QCD 
 q? 
 Q, both approaches give the same
answer. This explicitly establishes a connection between
the two mechanisms in a physical process. This connection
unifies the physical pictures for the underlying dynamics of
single-transverse-spin asymmetries. Therefore, phenome-
nological studies using the two mechanisms in the kine-
matic region where they are both valid are constrained to
yield identical results for them. Our results also provide a
scheme for the analysis of SSAs over the whole kinematic
regime of transverse momentum: the TMD QCD factori-
zation formalism for low q?, and the collinear QCD facto-
rization formalism for high q?, while both formalisms
produce the same result where they overlap. An interesting

extension to semi-inclusive deep inelastic scattering will
be presented elsewhere.
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