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We demonstrate that if k-essence can solve the coincidence problem and play the role of dark energy in
the Universe, the fluctuations of the field have to propagate superluminally at some stage. We argue that
this implies that successful k-essence models violate causality. It is not possible to define a time ordered
succession of events in a Lorentz invariant way. Therefore, k-essence cannot arise as a low energy
effective field theory of a causal, consistent high energy theory.
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Cosmological observations indicate that the expansion
of the Universe is presently in an accelerating phase [1]. In
a homogeneous and isotropic universe, this can be ob-
tained, if the energy density is dominated by a component
x with wx � Px=�x <�1=3; here �x is the energy density
of the component x and Px is its pressure. The simplest
example of such a component which is compatible with
observations is a cosmological constant of the order of � ’
2H2

0 , where H0 is the present value of the Hubble parame-
ter. Apart from the smallness of this value, which cannot be
explained by any sensible theory of fundamental interac-
tions, it is perturbing that the value of the cosmological
constant should just be such that it comes to dominate
today.

In order to alleviate this coincidence problem, quintes-
sence [2] and k-essence [3] have been proposed. In these
models, a scalar field has the property that at early times, in
the radiation-dominated Universe, its energy density
‘‘tracks’’ the one of the cosmic fluid and therefore naturally
provides a sizable fraction of the energy density of the
Universe. Quintessence also tracks the matter energy den-
sity during matter domination, but the mechanism which
leads to the domination of quintessence today is not clearly
identified.

In the case of k-essence, the situation is different. Within
a certain range of initial conditions, the energy density
sharply drops after the beginning of the matter-dominated
era and assumes an equation of state Pk ’ ��k (de Sitter
phase). Afterwards, its contribution can either rise to domi-
nate the energy density with an equation of state of wk �
constant < 0 or become comparable to that of matter and
start to track the matter. The radiation tracker, de Sitter
phase, and k-essence domination (or matter tracker) are all
attractor solutions of the k-essence evolution equation. The
k-essence field is driven from one to the other by the
evolution of the Universe [3–5]. This looks promising as
a solution to the coincidence problem [6].

However, in this Letter, we shall show that a k-essence
field which behaves in the way described above cannot
emerge as the low energy limit of a consistent, causal high
energy theory (be this a quantum field theory or string
theory, see Ref. [7]).

The k-essence model is characterized by nonstandard
kinetic energy terms [3,4]. The problem of acausalities in
scalar field theories with a nonquadratic Lagrangian has
also been addressed in Ref. [8]. The action of k-essence is
given by

 S �
Z
d4x

�������
�g
p

�
�
R
6
� P��;X�

�
; (1)

where � is the k-essence field and X � 1
2r��r

��. We
use units with 8�G

3 � 1 and the metric signature is
��;�;�;��. Furthermore, one assumes that the
Lagrangian can be factorized P��;X� � K���p�X�, with
K���> 0. A standard scalar field with P��;X� � X does,
of course, not have the behavior we are looking for: One
therefore allows p to be an arbitrary, monotonically grow-
ing function of X [4].

Varying the above action with respect to the metric, one
obtains the energy momentum tensor

 T�� �
@P��;X�
@X

r��r��� P��;X�g�� (2)

 � ��k � Pk�u�u� � Pkg��; (3)

with u� � �2X��1=2r��, �k � 2X @P
@X� P, and Pk � P.

Note that in a homogeneous and isotropic universe r�� is
timelike, X > 0.

The idea is, of course, that � is a low energy effective
degree of freedom of some fundamental high energy theory
[3,4,9] which should satisfy basic criteria: among them,
most importantly, Lorentz invariance and causality. No
information should propagate faster than the speed of light
c � 1. Let us translate this basic requirement to the low
energy effective degree of freedom �. We consider the
cosmic background solution with small fluctuations � �
�0�t� � ���t;x�. It is then easy to derive an equation of
motion for the fluctuations ��which is of the generic form
[10]
 

���� � _��� ���� c2
s��� � 0

where ��� � gij@i@j����: (4)

Here an overdot is a derivative with respect to physical
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time t, and �,�, and c2
s are functions of t. In the case of the

k-essence field, from the action (1) one finds [9]

 c2
s �

p0

2Xp00 � p0
; 0 �

d
dX

: (5)

If, for some time, c2
s > 1, the fluctuations �� (or, equiv-

alently, the Bardeen potential) propagate faster than the
speed of light and are therefore acausal. Indeed, Eq. (4) can
be rewritten as

 �G�1���@�����@����� � � _��� ��� � 0; (6)

where we have defined

 �G�1��� � g�� � �1� c2
s�gij�

�
i �

�
j (7)

as the inverse of the metric which governs the propagation
of the k-essence field. The characteristic cones of (6) are
given by �G�1��� [11] and the rays by the metric

 G�� � g�� �
1� c2

s

c2
s

gij�i��
j
�: (8)

If c2
s > 0, G�� is Lorentzian [12]. However, if we consider

a vector n� lying on the light cone defined by the Einstein
metric g��, we have

 G��n�n� �
1� c2

s

c2
s

gijninj: (9)

Since gijninj < 0, c2
s > 1 implies G��n

�n� > 0, i.e., n� is
timelike with respect to G��. Therefore, the characteristic
cone given by G�� is wider than the light cone of causality
defined by g��.

But a k-essence field value at some event q0 � �	0;x0�
can be affected by the values of all points inside the past
characteristic cone defined by G�� [13]. Let us now con-
sider a point q1 � �	1;x1� which is inside the past char-
acteristic cone but outside the past light cone of q0. Since
c2
s > 1, such points exist, and, in general, the field value at
q1 influences the value at q0. However, since q1 is outside
the past light cone of q0, the distance q0 � q1 is spacelike
and there exists a boost such that the boosted event q01 is in
the future of q00. In other words, the value of the field at q00
can be affected by its values in the future, an evident
acausality. This is the well known consequence of relativ-
ity. Whenever an event in q is affected by something out-
side its past light cone (defined by the metric which
determines causality, i.e., the propagation of light and other
standard model particles), the present is affected by the
future in some boosted reference frame. In order for
causality to be respected, it is therefore not enough that
the k-essence field propagates inside the light cone of G��

(as suggested in Ref. [14]). If this cone is wider than the
one of the Einstein metric, this leads to superluminal
propagation of the k-essence field perturbations, which is
not acceptable.

Similar arguments in the more complicated case of
multicomponent fields have led Velo and Zwanziger to

the exclusion of generic higher spin theories [15]. On the
other hand, Gibbons [16] has analyzed the tachyon in the
effective field model proposed by Sen [17] and by the same
argument has concluded that ‘‘the tachyon is not a
tachyon,’’ because the characteristic cone of the tachyon
lies inside or on the light cone of the Einstein metric. The
tachyon is unstable but it does not violate causality. The
causality argument is also at the basis of Ref. [7], where it
is used to exclude certain Lagrangians as possible low
energy approximations of a sound high energy field theory.
There it is also shown that this argument is not alleviated if
we allow the high energy theory to be a string theory.
Therefore, the fluctuation equation (4) leads to acausalities
if c2

s becomes larger than 1. (For an alternative view, see
Ref. [18].)

In the rest of the Letter, we show that this is exactly what
happens in the case of successful k-essence models. We
first present two examples from the literature and then
formulate a general proof showing that for a successful
k-essence model c2

s must become larger than 1 for some
time.

The equation of motion of the k-essence field is derived
from the action (1). In order to have tracking solutions, one
must require K��� � 1=�2 [4]. Moreover, to describe the
dynamics of the k-essence field, it is useful to consider the
new variable y � 1=

����
X
p

and introduce the function g�y� �
p�X�=

����
X
p

. In the new variables, the energy density be-
comes �k � 2X @P

@X� P � �g
0=�2. Here a prime denotes

differentiation with respect to y. Since �k has to be posi-
tive, g is monotonically decreasing, dg=dy � g0 < 0.
Other useful relations are [3]

 wk �
Pk
�k
�

p
2Xp0 � p

�
�g
yg0

(10)

and

 c2
s �

p0

2Xp00 � p0
�
g� g0y

g00y2 (11)

(note that a prime on p stands for derivatives with respect
to X, while a prime on g indicates derivatives with respect
to y). The stability condition c2

s > 0 requires g00 > 0 so that
g is convex [4].

In a Friedman universe with H2 � �tot � �r � �d � �k
and �k � �k=�tot (�r being the energy density of radiation
and �d that of pressureless matter, dust), the k-essence
equation of motion can be written in the form [3]

 _y �
3�wk�y� � 1�

2r0�y�
�r�y� �

�������
�k

p
�; (12)

 

_� k � 3�k�1��k��wm � wk�y��: (13)

Here a dot indicates the derivative with respect to N �
ln�a�, where a is the scale factor, wm is the ratio

 wm �
1

3

�r
�r � �d

; (14)
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and

 r�y� �
3

2
���
2
p

���������
�g0

q
�1� wk�y �

3

2
���
2
p
�g� g0y����������
�g0

p : (15)

Fixed points yf of the above system of equations are given
by r2�yf� � �k � constant, and either wk�yf� � wm or
�k � 0 or �k � 1. These either are stable or can be
made stable with small changes in the function g [4].

The evolution of the Universe drives the k-essence field
from one fixed point to another. At early times, within a
suitable range of initial conditions, k-essence quickly ap-
proaches the radiation fixed point yr. In order not to violate
the nucleosynthesis bound, one requires r�yr� �

�������
�k

p
&

0:1. When the Universe becomes matter-dominated, the
radiation fixed point is lost and the k-essence energy
density decreases rapidly until the de Sitter attractor ys
with 0 ’ �k � r�ys� 	 r�yr� is reached. From there, the
field evolves to the k-essence attractor yk with r�yk� ��������

�k

p
’ 1 and �1<wk�yk�< 0, or, if this attractor does

not exist, it evolves onto the dust attractor yd with
wk�yd� � wm � 0. At present, the field is on its way
from the de Sitter fixed point up to either the k-essence
or the dust attractor.

Examples of Lagrangians P��;X� that can be found in
the literature are [3,4]

 P��;X� �
1

�2 ��2:01� 2
�������������
1� X
p

� 3
 10�17X3

� 10�24X4� (16)

and
 

P��;X� �
1

�2 ��2:05� 2
�������������������
1� f�X�

q
�

where f�X� � X� 10�8X2 � 10�12X3 � 10�16X4

� 10�20X5 � 10�24X6=26: (17)

The evolution of interesting physical quantities for the La-
grangian (16) are shown in Figs. 1 and 2. Example (17)
behaves similarly. In these examples, k-essence evolves to
the final stage of k-essence domination.

Figure 2 shows that c2
s becomes larger than 1 during the

evolution from the radiation fixed point to the de Sitter
fixed point and remains slightly larger than 1 in the future,
when k-essence reaches the k attractor.

In Ref. [7], it is shown that, for small values of X,
superluminal propagation of perturbations around a non-
trivial background is related to the sign of the coefficient in
front of the leading higher-dimension operator in the
Lagrangian: The absence of superluminal propagation re-
quires a positive coefficient. In both examples, expansion
for small X leads to p�X� � a� bX� dX2 �O�X3�, with
d < 0. For small X, p00�X� � 2d is negative, and Eq. (5)
hence gives c2

s > 1. In both examples, the theory is acausal.
We note, however, that no problem arises in k inflation,

where the coefficient in front of the term X2 in the
Lagrangian is positive [9].

We now demonstrate that c2
s > 1 is mandatory in every

k-essence model that aims to solve the coincidence prob-
lem and leads to accelerated expansion of the Universe
today. From Eq. (11), c2

s > 1 is equivalent to g00y2 < g�
g0y. Using

 wk �
�g
yg0

; w0k �
gg0 � gg00y� g02y

�g0y�2
; (18)

and remembering that g0 < 0, we conclude that wk > 1 is
equivalent to g� yg0 > 0 and w0k < 0 is equivalent to
gg0 � gg00y� g02y < 0. If both of these conditions are
fulfilled, we necessarily have 0> gg0 � gg00y� g02y >
�g0��g� g00y2 � g0y�. In the last unequal sign, we have
used g >�yg0 and g00 > 0. Since g0 < 0, this implies
g00y2 < g� g0y and therefore c2

s > 1.
We now show that such a situation always arises in

k-essence models which solve the coincidence problem.
We first consider the evolution of k-essence from the

FIG. 1. The ratio of k-essence to the total energy density �k as
function of 1� z for the example (16).

FIG. 2 (color online). The equation of state parameter wk and
sound velocity c2

s as functions of 1� z for the example (16).
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radiation fixed point yr to the k-essence fixed point yk. We
then show that the same arguments hold if the k attractor is
replaced by a late dust attractor.

We recall that, at a fixed point, r�yf� �
�������
�k

p
. Moreover,

one always has yk > yr since g is monotonically decreas-
ing, and wk�yk�< 0; hence, g�yk�< 0 while g�yr�> 0 [see
Eq. (18)]. Equation (15) gives

 

dr
dy
�

3

2
���
8
p

g00y���������
�g0

p �wk�y� � 1�; (19)

and since g00 > 0, r�y� can increase only if wk > 1. Since
r�yk�> r�yr�, r has to increase from yr to yk. This implies
that there exists an interval y0 < y< y2, with yr < y0 <
y2 < yk, in which wk�y�> 1. Since wk�yk�< 0, we can
choose without loss of generality wk�y2� � 1. For some
part of the interval, say, in �y1; y2�, wk has to decay: w0k <
0. Therefore, both conditions necessary for c2

s > 1 are
satisfied in �y1; y2�. In other words, between two points
ya < yb with r�ya�< r�yb� and w�ya�< 1, w�yb�< 1,
there exists necessarily an interval with c2

s�y�> 1.
If the k attractor is replaced by a late dust attractor, the

situation is alike. Indeed, since wk�yd� � 0 and, hence,
g�yd� � 0< g�yr�, we must have yr < yd. Furthermore,
in order to have a period of accelerated expansion with
wk <�1=3, we need r�yd�> r�yr�. If r�yd�< r�yr�, the
accelerating phase is avoided because the k-essence fluid is
attracted immediately to the dust attractor after matter-
radiation equality [4]. Therefore, r0�y� must be positive in
an interval between yr and yd and the demonstration above
holds also in this case.

The only behavior relevant for this result is the existence
of a radiation tracker which goes over into an accelerating
phase with wk <�1=3 and a relatively large value of �k,
as we observe it today. During such a phase, �k must
increase according to (13), and, if it is to reach a fixed
point yf with �k � r2�yf� and yf > yr, the function r�y� is
bound to increase somewhere, which is sufficient for c2

s >
1 as we have shown above. On its way from the radiation
fixed point, wk�yr� � 1=3, �k � r2�yr� 	 1 to the
k-essence fixed point with wk�yk�< 0, �k � r2�yk� ’ 1
[or to the dust fixed point with wk�yd� � 0, �k � r2�yd�>
r2�yr�], the k-essence fluid has to pass through an interval
where c2

s > 1.
The fact that wk has to be larger than 1 in some interval

for a successful k-essence model was already pointed out
in Ref. [4]. This means that there exist observers which see
an energy flow which is faster than the speed of light. But
this does not necessarily pose a problem for causality, since
the energy flow does not carry information. However, c2

s
represents the propagation velocity of the perturbations, at
least in the WKB limit which is always justified for large
enough wave numbers, and therefore it really means that
information can travel faster than light.

We have shown that k-essence, which has the capacity to
play the role of dark energy and, especially, to address the
coincidence problem, cannot result as a low energy effec-

tive theory from some meaningful, causal high energy field
theory, because it necessarily undergoes phases where
c2
s > 1. In the examples presented here, c2

s > 1 also at
late times. This means that k-essence models which solve
the coincidence problem are ruled out as serious candidates
for dark energy. However, the k-essence model proposed in
Ref. [19], which does not solve the coincidence problem,
does not have c2

s > 1. Also, the form of the Lagrangian
needed for successful k inflation usually does not suffer
from this problem and has causally propagating
fluctuations.
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