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We develop a strong and computationally simple entanglement criterion. The criterion is based on an
elementary positive map � which operates on state spaces with even dimension N � 4. It is shown that �
detects many entangled states with a positive partial transposition (PPT) and that it leads to a class of
optimal entanglement witnesses. This implies that there are no other witnesses which can detect more
entangled PPT states. The map � yields a systematic method for the explicit construction of high-
dimensional manifolds of bound entangled states.
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Entanglement and quantum inseparability are key fea-
tures of quantum mechanics which are connected to the
tensor product structure of the state spaces of composite
systems. A mixed state � of a bipartite system, for instance,
is defined to be separable or classically correlated if it can
be written as a convex linear combination of uncorrelated
product states, i.e., if it can be represented in the form � �P
ipi�

i
1 � �

i
2, where fpig is a probability distribution and

the �i1, �i2 are density matrices describing states of the first
and the second subsystem, respectively [1]. States which
cannot be written in this way are called inseparable or
entangled. Much effort in quantum information theory
has been devoted to the problems of the characterization,
the classification, and the quantification of mixed state
entanglement [2,3]. Although considerable progress has
been made in recent years (see, e.g., Refs. [4]), we are still
far away from a true understanding of many aspects of
these problems.

A problem of central importance in entanglement theory
is the development of computationally efficient criteria
which allow us to decide whether or not a given state is
entangled. Peres [5] has developed a very strong entangle-
ment criterion which is known as the criterion of positive
partial transposition (PPT). It states that a necessary con-
dition for a given state � to be separable is that its partial
transpose is a positive operator. Usually, one writes this
condition as �I � T�� � 0, where T denotes the transposi-
tion of operators in a chosen basis and I is the identity map,
indicating that the transposition is carried out only on the
second part of the composite system. The PPT condition
represents a necessary and sufficient separability criterion
for certain low-dimensional systems [6], but it is only
necessary in higher dimensions. Hence, there are generally
entangled PPT states which belong to the class of bound
entangled states [7].

The transposition T is a distinguished example of a
positive but not completely positive map. This means
that T maps all positive operators on the subsystems to
positive operators, while there exist states � of the com-
bined system for which �I � T�� has negative eigenvalues.

There are many other maps with this property. The signifi-
cance of positive maps in entanglement theory is provided
by a fundamental theorem established in Ref. [6]. This
theorem states that a necessary and sufficient condition
for a state � to be separable is that �I ���� is positive
for any positive map �. Hence, a given state is separable if
and only if it remains positive under the application of all
positive maps to one of its local parts.

By virtue of the PPT criterion, the development of
appropriate separability criteria reduces to the construction
of those positive maps which are able to detect entangled
PPT states. Such maps are called nondecomposable [8]
because they cannot be written as a sum of a completely
positive map and of the composition of a completely
positive map with the transposition map. However, this
formulation does not lead to a simple operational entan-
glement criterion since the general structural characteriza-
tion of positive maps is an unsolved mathematical
problem. In particular, the explicit construction of non-
decomposable positive maps turns out to be an extremely
difficult task.

Here, we develop a universal nondecomposable positive
map � which operates on the states of any state space with
even dimension N � 4. The map � is composed of ele-
mentary operations and yields a very strong separability
criterion which is particularly efficient for the identifica-
tion of entangled PPT states. We show that � detects many
entangled states in arbitrary dimensions which are neither
detected by the PPT criterion nor by the strong realignment
criterion [9,10].

It is known that positive maps are in one-to-one corre-
spondence to certain observables called entanglement wit-
nesses [11]. The map � constructed here has the
remarkable property that it automatically leads for all N
to entanglement witnesses which have the property of
being optimal. This means that there are no other witnesses
which are finer, i.e., which are able to identify more
entangled PPT states. Moreover, we develop a systematic
method for the explicit construction of high-dimensional
manifolds of bound entangled states for arbitrary N.
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We consider an N-state system with Hilbert space CN .
Without loss of generality, we will regard CN as the state
space of a particle with spin j, where N � 2j� 1. The
corresponding basis states are denoted by jj;mi, where
m � �j;�j� 1; . . . ;�j. Since we assume that N is
even, the spin j must be half-integer valued.

An important ingredient of our separability criterion is
the symmetry transformation of the time reversal which is
described by an antiunitary operator � [12]. As for any
antiunitary operator, we can write � � V�0, where �0

denotes the complex conjugation in the chosen basis
jj; mi, and V is a unitary operator. In the spin representa-
tion introduced above, the matrix elements of V are given
by hj;m0jVjj; mi � ��1�j�m�m0;�m. For evenN this matrix
is not only unitary but also skew symmetric, i.e., we have
VT � �V, where T denotes the transposition. It follows
that �2 � �I, which leads to

 h’j�’i � 0: (1)

This relation expresses a well-known property of the time
reversal transformation � which will play a crucial role in
the following: For any state vector j’i of the spin-j particle
the time-reversed state j�’i is orthogonal to j’i. This is a
distinguished feature of even-dimensional state spaces,
because unitary and skew-symmetric matrices do not exist
in state spaces with odd dimension.

The action of the time reversal transformation on an
operator B on CN can be expressed by

 #B � �By��1 � VBTVy: (2)

This defines a linear map # which transforms any operator
B into its time-reversed operator #B. For example, if we
take the spin operator ĵ of the particle, Eq. (2) gives the
spin flip transformation #ĵ � �ĵ. According to the sec-
ond relation in Eq. (2) the map # is unitarily equivalent to
the transposition map. Hence, the PPT criterion is equiva-
lent to the condition that the partial time reversal #2 is
positive:

 #2� � �I � #�� � 0:

We define a linear map � which acts on operators B on
CN as follows:

 �B � �TrB�I � B� #B: (3)

It will be demonstrated below that this map is positive but
not completely positive. Hence, it yields the following
necessary condition for separability:

 �2� � �I ���� � 0: (4)

To motivate definition (3) we recall that in another sepa-
rability criterion, known as reduction criterion [13,14], one
uses the positive map defined by �B � �TrB�I � B.
Comparing this definition with Eq. (3), we see that � �
�� #. Hence, not only the map � of the reduction crite-
rion and the time reversal # are positive, but also their

difference � � �� #. The criterion (4) can therefore be
restated as �2�� #2� � 0. If � is a PPT state, i.e., if
#2� � 0 we subtract a positive operator from �2� when
evaluating condition (4), which sharpens the condition of
the reduction criterion considerably. For this reason the
inequality (4) can be expected to yield a very strong
separability criterion which is particularly suited to recog-
nize the entanglement of PPT states.

It is easy to prove the positivity of the map � defined by
Eq. (3). We have to show that for any positive operator B
also the operator �B is positive. This statement is obvi-
ously equivalent to the statement that the operator ��j’i	
h’j� is positive for any normalized state vector j’i. Using
definition (3) we find

 ��j’ih’j� � I � j’ih’j � j�’ih�’j � I ��:

Because of Eq. (1) the operator � introduced here repre-
sents an orthogonal projection operator which projects
onto the subspace spanned by j’i and j�’i. It follows
that also ��j’ih’j� is a projection operator and, hence,
that it is positive for any normalized state vector j’i. This
proves our claim. Note that for N � 2 the projection � is
identical to the unit operator such that � is equal to the
zero map in this case. For this reason we restrict ourselves
to the cases of even N � 4.

To show that the map � is not completely positive we
consider the tensor product space CN � CN of two spin-j
particles. The total spin of the composite system will be
denoted by J. According to the triangular inequality J
takes on the values J � 0; 1; . . . ; 2j � N � 1. The projec-
tion operator which projects onto the manifold of states
corresponding to a definite value of J will be denoted by
PJ. In particular, P0 represents the one-dimensional pro-
jection onto the maximally entangled singlet state J � 0.
We define a Hermitian operator W by applying the tensor
extension of � to the singlet state:

 W � N�I ���P0

� ��N � 2�P0 � 2P2 � 2P4 � . . .� 2P2j�1: (5)

In the second line we have used definition (3), the fact that
the sum of the PJ is equal to the unit operator, the relation
Tr2P0 � I=N (Tr2 denotes the partial trace taken over
subsystem 2), and the formula [15]

 #2P0 �
1

N
F � �

1

N

X2j
J�0

��1�JPJ; (6)

where F denotes the swap operator which is defined by
Fj’1i � j’2i � j’2i � j’1i. We infer from Eq. (5) that the
operator W has the negative eigenvalue ��N � 2� corre-
sponding to the singlet state J � 0. Therefore, W is not
positive and the map � is not completely positive.

Next we show that the criterion (4) detects entangled
PPT states for all evenN � 4. To this end, it is again useful
to employ the operator W defined by Eq. (5). Since � is
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positive, but not completely positive,W is an entanglement
witness [6,16]. We recall that an entanglement witness is a
Hermitian operator which satisfies TrfW�g � 0 for all
separable states �, and TrfW�g< 0 for at least one en-
tangled state �, in which case we say that W detects �. A
witness W is called nondecomposable if it can detect
entangled PPT states [11]. We prove that there are always
entangled PPT states � which are detected by the witness
defined in Eq. (5), i.e., for which TrfW�g< 0. In other
words, our witness W is nondecomposable. This implies
that also � is nondecomposable and that the stronger
criterion (4) always detects entangled PPT states.

Consider the following one-parameter family of states:

 ���� � �P0 � �1� ���0; 0 
 � 
 1: (7)

These normalized states are mixtures of the singlet state P0

and of the state

 �0 �
2

N�N � 1�
PS �

2

N�N � 1�

X
Jodd

PJ

which is proportional to the projection PS onto the sub-
space of states which are symmetric under the swap op-
eration. Note that �0 is a separable state which belongs to
the class of Werner states [1]. Since PS can be written as a
sum over the projections PJ with odd J, we immediately
get, with the help of Eq. (5),

 Tr fW����g � ���N � 2�:

Hence, we find that TrfW����g< 0 for � > 0. We con-
clude that all states of the family (7) corresponding to � >
0 are entangled, and that �0 is the only separable state of
this family. On the other hand, using the representation
PS � �I � F�=2 and Eq. (6) we find

 #2���� �
1� 2�
N

P0 �
1

N

X2j
J�1

�
��1�J�1��

1� �
N � 1

�
PJ:

It is not hard to check by means of this equation that the
PPT condition #2���� � 0 is equivalent to � 
 1=�N �
2�. Hence, all ���� with 0< � 
 1=�N � 2� are en-
tangled PPT states which are detected by the witness W.
This proves that the witness W and the map � are
nondecomposable.

The above argument demonstrates that the inequality
TrfW�g � 0 represents a necessary and sufficient separa-
bility condition for the family of states (7). Obviously, this
criterion cannot be improved by introducing other wit-
nesses which leads to the idea that W is an optimal entan-
glement witness. To make this idea more precise we
introduce the following notations [11]. We denote by DW
the set of all entangled PPT states of the total state space
which are detected by some given nondecomposable wit-
nessW. AwitnessW2 is said to be finer than a witnessW1 if
DW1

is a subset of DW2
, i.e., if all entangled PPT states

which are detected by W1 are also detected by W2. A given

witness is said to be optimal if there is no other witness
which is finer, i.e., if there is no other witness which is able
to detect more entangled PPT states. It is a remarkable fact
that our witness W is always optimal in this sense.

Theorem.—The operator W � N�I ���P0 on CN � CN

is a nondecomposable optimal entanglement witness for all
even N � 4.

Proof: The proof is based on results of Lewenstein,
Kraus, Horodecki, and Cirac [17]. Following these authors
we define for any given entanglement witnessW the set �W
as the set of all product vectors j’1; ’2i � j’1i � j’2i in
CN � CN for which the expectation value of W is equal to
zero, i.e., for which the relation

 h’1; ’2jWj’1; ’2i � 0 (8)

holds. According to Ref. [17] a given nondecomposable
entanglement witness W is optimal if the elements of the
set �W as well as the elements of the set �#2W span the total
state space CN � CN . In the present case we have #2W �
W which follows from the relation #� � � [see Eq. (3)].
Hence, we only have to show that the elements of �W
corresponding to our witness W span the state space of
the composite system.

The elements of �W can easily be characterized. We take
any normalized product vector j’1i � j’2i and use defini-
tions (5) and (3) to evaluate the condition (8):

 h’1; ’2jWj’1; ’2i � 1� jh’1j’2ij
2 � jh’1j�’2ij

2 � 0:

This equation is fulfilled if and only if j’1i lies in the
subspace spanned by the orthogonal vectors j’2i and
j�’2i. In particular, all product vectors of the form

 j’i � j�’i or j�’i � j’i (9)

belong to �W , where j’i 2 CN is arbitrary.
Consider now an arbitrary product vector j�1i � j�2i,

and define j’1i � j��1i � j�2i and j’2i � ij��1i �
j�2i. Then one can easily check the following identity:
 

j�1i � j�2i � �
1

2
j�’1i � j’1i �

i
2
j�’2i � j’2i

�
1

2
�1� i�j�1i � j��1i

�
1

2
�1� i�j��2i � j�2i:

The right-hand side of this identity is a linear combination
of four product vectors of the form (9). We conclude that
any product vector j�1i � j�2i can be represented as a
linear combination of elements of �W . Since any state
vector in CN � CN can of course be written as linear
combination of product vectors, this implies that any state
vector can be represented as linear combination of ele-
ments of �W . In other words, the set �W indeed spans the
whole Hilbert space, which proves the theorem.

Because of its optimality the separability criterion (4)
can be much stronger than other known separability crite-
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ria. Let us illustrate this point by means of the family of
states defined by Eq. (7). Each separability criterion rec-
ognizes the entanglement of the states ���� with �c < � 

1, where �c is a certain threshold value depending on the
criterion chosen. The weakest criterion is the reduction
criterion which gives �c � 1=N. The same result is ob-
tained if one uses the majorization criterion [18] or the
quantum Rényi entropy S1 [13]. Surprisingly, the realign-
ment criterion, which is known to be able to recognize
many entangled PPT states, is not stronger than the reduc-
tion criterion in the present case, i.e., we again have �c �
1=N. The PPT criterion is slightly better and yields �c �
1=�N � 2�. As shown above, the most efficient criterion is
obtained by means of the map � which leads to the optimal
value �c � 0.

A further instructive example is given by the set of
rotationally symmetric states [19] on the state space C4 �
C4. These are the states of a system which is composed of
two particles with spin j � 3=2 and which is invariant
under unitary product representations of the group SU(2).
As shown in [15] the map � detects all entangled PPT
states in this case, i.e., the inequality �2� � 0 taken
together with the PPT criterion #2� � 0 represents a nec-
essary and sufficient separability condition for all SU(2)-
invariant states.

The map � is not only useful in detecting entangled PPT
states but also provides us with a simple and systematic
method of constructing high-dimensional manifolds of
such states for arbitrary dimensions N. We take any en-
tangled PPT state �ppt which is detected by W, e.g., a PPT
state of the family (7). Then

 � � �ppt �
X
�

p�j’
�
1 ; ’

�
2 ih’

�
1 ; ’

�
2 j (10)

is again an (unnormalized) entangled PPT state, where
p� � 0 and the sum is extended over an arbitrary collec-
tion of product vectors j’�1 ; ’

�
2 i taken from �W . We have a

large freedom in the choice of these vectors: The only
condition is that for each � the state j’�1 i lies in the
subspace which is spanned by j’�2 i and j�’�2 i. For ex-
ample, identifying the index�with the quantum numberm
we can choose j’�2 i � jj; mi and j’�1 i � jj;mi or j’�1 i �
jj;�mi. Equation (10) then represents a 2N-dimensional
manifold of entangled PPT states.

Summarizing, we have constructed a universal nonde-
composable positive map which leads to a powerful sepa-
rability criterion and to a class of optimal entanglement
witnesses. Our results suggest many further studies and
applications. An important issue, for example, is the in-
vestigation of the properties of entanglement measures.
Recently, Chen, Albeverio, and Fei [20] have derived lower
bounds for the concurrence [21] and for the entanglement

of formation [22] by connecting these entanglement mea-
sures with the PPT criterion and the realignment criterion.
It is very likely that this connection can be extended to the
optimal entanglement criterion developed here, which will
yield a considerable improvement of the known analytical
bounds for entanglement measures.
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