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Globally symmetric spinor condensates in free space are argued not to support stable topological
defects in either two or three dimensions. In the latter case, however, we show that a topological Skyrmion
can be stabilized by forcing it to adopt certain density profiles. A sufficient condition for the existence of
Skyrmion solutions in three dimensions is formulated and illustrated in simple examples. Our results
pertain to Bose-Einstein condensation in 87Rb.
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Topologically nontrivial configurations play a crucial
role in our present understanding of ordering, dynamics,
and criticality in basic models of statistical mechanics [1].
Probably the best understood example is that of vortices
and vortex loops in the Ginzburg-Landau, or Higgs,
O�2�-symmetric theory for a complex order parameter in
two (2D) and three dimensions (3D), which are responsible
for the very existence of the disordered phase at high
temperatures [2]. The next in order of increasing complex-
ity is the O�3�-symmetric Heisenberg model, which allows
texturelike Skyrmions in 2D [3] and pointlike hedgehogs
in 3D [4]. Whereas Skyrmions in 2D are understood to
provide an additional source of disorder for the low-
temperature phase, the exact role of hedgehogs in the 3D
Heisenberg model is already less clear [5]. Both, never-
theless, represent nontrivial spatial configurations, which
by virtue of their distinct topology are locally stable and
separated from the ground state by an infinite energy
barrier.

In this Letter, we study the issue of topological defects in
the next simplest case: the order parameter with global
O�4� symmetry. Such a symmetry arises in complex con-
densates with an internal spin-1=2-like quantum number
[6], for example. Realizations of such spinor condensates
are found in models of inflatory cosmology [7], Bose-
Einstein condensation of 87Rb [8], bosonic ferromagnetism
[6,9], and in effective theories of high-temperature super-
conductivity [10,11] and of deconfined criticality [12]. The
Higgs sector of the Weinberg-Salam model of electroweak
interactions represents another closely related example,
with a spinor condensate coupled to gauge fields. It is
easy to show that the triviality of the first and the second
homotopy groups of the three-dimensional unit sphere S3,
on which the order parameter lives at low temperatures,
implies that there are no stable topological defects in two
dimensions. 2D spinor condensates may therefore be ex-
pected to be in the disordered phase at all finite tempera-
tures, precisely as described by theO�4� nonlinear�model
(NL�M). In 3D, on the other hand, standard topological
considerations suggest the possibility of a Skyrmion tex-

ture, thanks to the third homotopy group of S3 being the
group of integers. Here, however, unexpected subtleties
arise, which together with the growing relevance of the
problem provide the motivation for the present work.

It has been known that finite-energy textures in higher
than two dimensions are generally unstable with respect to
shrinkage [13]. Derrick’s scaling argument does not, how-
ever, forbid topological defects with infinite energy, hedge-
hogs in the 3D Heisenberg model being a prime example.
The search for stable topological defects in the O�4�
NL�M in 3D, however, has so far led to a negative result
[14–17]. We first demonstrate that, even with amplitude
variations included, the spherically symmetric Skyrmion
remains unstable. This conclusion follows from a useful
mechanical interpretation of Skyrmion’s differential equa-
tion, in which the radial dependence of a particle’s density
appears as a ‘‘source of dissipation’’ for a fictitious classi-
cal particle, which prevents it from oscillating with a full
amplitude. This hindrance, however, may be turned into an
advantage by forcing the same radial dependence to have a
form that effectively serves as an ‘‘energy pump.’’ This
idea yields an integral condition on the density profile
of a Skyrmion, which we illustrate with three qualitatively
different analytical solutions of the nonlinear Euler-
Lagrange equations. Skyrmion solutions are found, for
example, for specific forms of the confining potential,
which may be used in creating such configurations in the
laboratory [8].

Let us begin by defining the system of two-component
bosons in the continuum with the standard action in terms
of the complex coherent states written as

 S�
Z �

0
d�d3 ~x

�
�y�@��r

2���V� ~x����
U
2
��y��2

�
;

(1)

where �y � ���1� ~x; ��;�
�
2� ~x; ���. We have also included a

confining potential V� ~x�, assumed a contact repulsionU for
simplicity, and set @ � 1, and the boson mass 2m � 1.
� � 1=kBT is the inverse temperature.
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We are interested in finding classical, that is,
�-independent, locally stable field configurations of the
action (1). The field �� ~x� may be written in terms of its
real amplitude f� ~x� and the normalized complex spinor
a� ~x� as �y � fay, with aya � 1. The low-energy physics
is then described by fluctuations of the spinor a, which can
be identified with a four-component real vector of unit
length. The symmetry of the order parameter is thus
O�4�. Varying the above action leads to the requisite
Euler-Lagrange equations

 f�ayr2a� �r2ay�a�a � 2fr2a� 4�rf� � �ra�; (2)

 �r2f� ��ray� � �ra� � 1� V	f� f3 � 0; (3)

where we have rescaled the lengths as ~x
����
�
p
! ~x, the

amplitude as f
�����������
U=�

p
! f, and the external potential as

V=�! V. The solution needs to satisfy the boundary
conditions

 lim
x!1

x2f2ra � 0; (4)

which guarantee stability with respect to small rotations of
the spinor a at the infinitely remote boundary of the
system.

Equations (2) and (3) form a set of five differential
equations for real and imaginary parts of the spinor a
and the amplitude f. In a spherically symmetric potential
V� ~x�, we can partially solve them, however, by assuming
the most general ansatz with the same symmetry [4]:
f� ~x� � f�r�,

 ay� ~x� � �sin!�r� cos�� i cos!�r�; sin!�r� sin�ei��; (5)

where ~x � �r sin� cos�; r sin� sin�; r cos��. Somewhat te-
dious but otherwise straightforward algebra shows that all
four of Eqs. (2) will then be satisfied provided that the
function !�r� satisfies the differential equation

 

d2!�r�

dr2
�

�
2

r
�

2

f�r�
df�r�
dr

�
d!�r�
dr

�
sin�2!�r��

r2 � 0:

(6)

Similarly, Eq. (3) then reduces to
 

�
d2f�r�

dr2 �
2

r
df�r�
dr

�

��
d!�r�
dr

�
2
�2

�
sin!�r�
r

�
2
�1�V�r�

�
f�r��f3�r��0:

(7)

The action for the ansatz (5) is
 

S
4��

�
Z 1

0
r2

��
df
dr

�
2
�

��
d!
dr

�
2

� 2
�
sin!
r

�
2
� V�r� � 1

�
f2 �

f4

2

�
dr; (8)

so that Eqs. (6) and (7) may also be recognized as Euler-
Lagrange equations for the latter form of S.

The ansatz for a� ~x� will be topologically nontrivial
and wrap the S3, defined by the condition aya � 1, N
times if, as the radius varies from zero to infinity, the
function !�r� takes all the values from zero to N�.
Hereafter, we restrict our discussion only to the elementary
Skyrmion with N � 1.

If we turn the external potential off [V�r� 
 0], it is easy
to show that Eqs. (6) and (7) do not actually have the
Skyrmion as a solution, the assumptions to the contrary
notwithstanding [15,16]. To this purpose, we define a new
‘‘time’’ variable �1< t � lnr <1. Equation (6) then
becomes

 �!�t� � �
dW�!�
d!

� ��t� _!�t�; (9)

with W�!� � �cos2!�=2, ��t� � 1� d lnf2�t�=dt, and
_! � d!=dt. The function !�t� may now be interpreted

as a coordinate of a particle moving in the potential W�!�,
coupled to a dissipative environment with the time-
dependent coefficient of dissipation ��t�. Let us first ne-
glect the amplitude variations dictated by Eq. (7).
Dissipation then still persists, and ��t� 
 1. Demanding
that !�0� � 0, Eq. (6) implies !�r� � r for r� 1, so that
the initial condition in our mechanical analogy is
!��1� � _!��1� � 0. This corresponds to rolling down
from the top of the potential W�!� without any initial
kinetic energy. Independently of the slope of !�r� at the
origin, the solution therefore always oscillates around and
approaches !�1� � �=2, dissipating energy and losing its
amplitude in the process. Equation (6) for a fixed ampli-
tude therefore admits only a meron (half-Skyrmion) as a
solution. However, since when r
 1, j!�r� � �=2j �
1=

���
r
p

for the meron, the boundary condition in Eq. (4) is
not satisfied. Consequently, the meron is unstable with
respect to deformation !�r� ! !�r� � 	�r�, with 	�0� �
0 and 0< 	�1� � 1 [18].

Before relaxing the condition of fixed amplitude, let us
observe that solutions of Eq. (6) [still with f�r� � const]
that satisfy the boundary conditions (4) and approach
!�1� � � as !�r� � �� 1=r2 do, in fact, exist. These
solutions, however, are singular near the origin !�r� �
�1=r and, hence, have an infinite action. We will refer to
these as singular solutions and discuss their possible sig-
nificance in a moment.

Next, we retain V�r� 
 0 but allow the amplitude varia-
tions. Finiteness of the action, measured from the value for
the ground state f�r� 
 1,!�r� � 0, requires then f�1� �
1. Linearizing near the origin, one still finds !�r� � Ar�
O�r2�, and f�r� � f�0� � �f�0�=6��f2�0� � 3A2 � 1�r2 �
O�r3�, where A and f�0� are finite constants. To have
f�1� � 1, we then find numerically that f�0�< 1 and
f�r� to be a weakly and uniformly increasing function
(Fig. 1). The reason behind such a behavior is obvious:
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Gradients of a� ~x� are largest near the origin, so suppressing
the amplitude there somewhat always lowers the energy.
Energy density being integrable, however, the amplitude
remains finite at the origin, and the Skyrmion is ‘‘core-
less.’’ With such a solution for f�r�, however, one still finds
!�1� � �=2 and Eq. (4) violated. This is evident from our
mechanical analogy in Eq. (9), in which having the ampli-
tude increasing with radius only adds to ‘‘dissipation.’’

The stage is now set for the main part of the Letter. The
preceding analysis points to a simple way to stabilize the
Skyrmion. To have a solution of Eqs. (6) and (7) satisfying
the requisite boundary conditions !�t � �1� � _!�t �
�1� � 0 and !�t � 1� � �, _!�t � 1� � 0, it is neces-
sary and sufficient that the total dissipation in our mechani-
cal analogy vanishes. Mathematically [19],

 

Z 1
�1

��t� _!2�t�dt � 0: (10)

The total mechanical, and thus the potential, energy is then
the same at the initial and the final time t. The amplitude
therefore must be a decreasing function at least for some
radia, where it would ‘‘pump’’ the energy back into the
oscillator. This is our main result. In the remaining, we
provide some specific amplitude profiles that indeed lead
to stable Skyrmions.

(i) The trivial case is the one without dissipation:
��t� 
 0. This is equivalent to the particle density

 f2�r� �
A
r
; (11)

with A as a constant. This yields

 !�r� � 2cot�1�r
��
2
p

�: (12)

Inserting this solution into Eq. (7) gives the external po-
tential that enforces such a density to be

 V�r� � 1�
A
r
�

1

4r2 �
16r2�

��
2
p
�1�

�1� r2
��
2
p

�2
: (13)

It is easy to check that this solution has a finite action, due
to the singularity of the external potential at the origin. The

same singularity, however, makes this simplest example
less than completely satisfying from a possible practical
point of view.

(ii) The difficulty in utilizing the condition in Eq. (10) is
that the velocity _!�t�, of course, depends on the dissipation
��t� in a rather nontrivial way, so it appears that solving the
differential equations (6) and (7) is always unavoidable in
practice. This, fortunately, is not so, due to the following
theorem: For potentials W�!� that are even functions of
!� �=2, and dissipation coefficients ��t� that are odd
functions of t, solutions of Eq. (9) are such that

 !�t� �
�
2
� �!��t� �

�
2
; (14)

i.e., odd functions of time, measured from the moment
when at the bottom of the potential. It is thus sufficient
to have a density profile that implies an odd ��t� to
stabilize the Skyrmion. As an illustration, consider

 ��t� � � tanh�t�; (15)

for which the particle density is simply

 f2�r� �
B

1� r2 ; (16)

with B as a constant. It is straightforward to check that the
solution of Eq. (7) is then

 !�r� � 2cot�1�r�; (17)

and the corresponding external potential

 V�r� � 1�
B

1� r2 �
15

�1� r2�2
: (18)

Different density profiles can be similarly constructed,
including those that would lead to a finite total number
of particles.

We may note that for the external potential in Eq. (18)
there is yet another, topologically trivial, solution of
Eqs. (6) and (7): !�r� � 0, f0�r�. Numerical solution for
f0�r� for B � 1 is plotted in Fig. 2. Since f0�r�> f�r�, the
action, which at a stationary point takes the form
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FIG. 1. A numerical solution of Eqs. (6) and (7): !�r� (thicker
curve) and f�r�.
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FIG. 2. Topologically trivial ground state f0�r� (upper curve)
and the Skyrmion’s amplitude f�r�, in the potential in Eq. (18)
with B � 1.
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S
4��

� �
1

2

Z 1
0
r2f4�r�dr; (19)

is actually lower for f0�r�. This represents the ground state
configuration in the potential (18).

(iii) Finally, the Skyrmion may be stable in a constant,
but discontinuous, particle density as well. Take f2�r� �
eC for r < 1, and f2�r� � 1 for r > 1, for example. Then

 

d lnf2�t�
dt

� �C
�t�; (20)

and the total dissipation will vanish for C tuned to

 C �
Z 1
�1

�
_!�t�
_!�0�

�
2
dt: (21)

Such a discontinuity in the amplitude may be understood as
providing a ‘‘kick’’ in our mechanical terminology, which
instantaneously increases the kinetic energy at t � 0 so
that there is just enough to reach the next top of the
potential W�!� at ! � �. This is possible because, for
any regular solution of Eq. (6) (with f � const) which
starts at !�r � 0� � 0, there is a singular solution that
intersects it at r � 1 and which asymptotically approaches
� as the radius increases. Their difference in slopes at
r � 1 determines the required injection of energy mea-
sured by the discontinuity C.

Previously, the Skyrmion was found to be stable numeri-
cally if theO�4� symmetry of the action in Eq. (1) is broken
down toO�2� �O�2�, in a way that favors phase separation
[17]. In contrast, our action is fully O�4� symmetric, and
the stability obtains from the interplay between the form of
the Skyrmion and its density profile. Derrick’s scaling
argument is likewise evaded by the introduction of the
preferred length scale for density variation. We hope our
results will help facilitate the production of these interest-
ing topological objects in laboratory spinor condensates,
such as 87Rb. Recent advances in (dynamic) manipulation
of confining potentials seem particularly promising in this
respect [20].

Finally, for completeness, let us revisit the issue of
defect’s stability in 2D. Consider

 ay� ~x� � �sin� cos��r� � i cos�; sin� sin��r�ei��; (22)

where ~x � r�cos�; sin��, and ��0� � 0 and ��1� � �=2.
For a fixed parameter � � �=2, this reduces to the con-
figuration often discussed in the literature [8]. It is evident,
however, that by tuning � one may continuously deform
the defect at � � �=2 to the trivial vacuum at � � 0,
monotonically decreasing the action along the way. This
construction exploits the fact that �2�S3� � 1. Topological
defects in spinor condensates are thus, in general, unstable
in free space both in 2D and in 3D, although for rather
different reasons.
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