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Recently, a new approach for the controllability of a two-dimensional quantum system S has been
proposed, based on its interaction with an initially uncorrelated two-dimensional probe P whose initial
state can be arbitrarily modified. Following this scheme and considering a particular model for the
environment, we show that, in some specific cases, the environment-induced entanglement is rich enough
to completely control the dynamics of S. Under suitable conditions on the interaction of S, P, and the
environment, we prove that the state of S can be driven to an arbitrary target state by varying the initial

state of P.
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Introduction.—In the past decades, a large interest has
grown around the quantum theory of information and
computation [1]. Because of the peculiar features exhibited
by microscopic systems, these are deemed appropriate to
be used in information processing not feasible by means of
classical systems. The major obstacle towards these appli-
cations is, however, the fragility of quantum systems. They
are strongly affected by interaction with the external envi-
ronment, which destroys the desirable features of quantum
dynamics, producing irreversibility and decoherence. A
number of ideas from control theory have been introduced
to overcome this problem, as, for example, in the quantum
theory of feedback [2,3]. Control theoretical ideas are also
used in the analysis of quantum dynamics and generation
of entanglement [4—-8] and in the development of algo-
rithms for the control of quantum systems [9—12].

In the context of control theory of quantum systems, a
fundamental question is to what extent it is possible to
modify the state of a system by an external action.
Although the (in principle, uncontrollable) interaction
with the environment usually has a negative impact on
the possibility of manipulating the quantum state, a recent
investigation in Ref. [13] has shown that the interaction
with a common environment can generate entanglement
for a couple of systems plunged in it. Motivated by this
result, we present in this Letter a new approach to the
control of a quantum system interacting with its surround-
ings, in which the environment-induced entanglement is
used to control the system despite decoherence. Therefore,
in this model, the environment represents a positive factor.

In the following, it is assumed that the dynamics of a
quantum system S depends on a number of parameters u
(the controls) that can be externally modified, i.e.,

ps(t,u) = (1, u)lps(0)] Q)]

for some linear map y = y(t, u), where py is the state of S.
In the controllability analysis, one wishes to study the state
transitions that can be induced by choosing the controls u.
To formalize this question, one introduces the reachable
set from pg at time t as the set of all the states that can be
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reached from pg by appropriately varying the control, i.e.,

R (ps. 1) ={ps(t,u)lps(0) = ps,u € U}, (2

where ‘U is the set of admissible controls. The reachable
set from pg is given by

R (ps) = lim Ry(ps), 3)
where
R r(ps) = U R(ps, 1) 4
0=r=T

is the reachable set from pg until T. In general, R(pg) C
P, where Py is the convex set of all density matrices
associated with S. The main controllability properties are
defined in terms of these sets. In particular, the system S is
said to be accessible if and only if R;(pg) contains a
nonempty open set of P for all T and for all pg € Py.
From a physical point of view, this means that it is possible
to move every initial state pg in any direction in Py by
choosing suitable control parameters u. Moreover, the
system S is said to be controllable if and only if R (pg) =
P for all initial states pg € Ps. Consequently, for a
controllable system S, every transition between any two
states in Py is allowed.

Controllability has been investigated in depth for quan-
tum systems when the controls u# appear as parameters in
the Hamiltonian of the system. This study has concerned
both unitary and dissipative evolutions and has led to
several algebraic criteria to test controllability (see, e.g.,
[14—17]). Techniques of control which use tunable pa-
rameters in the Hamiltonian of the systems are referred
to as coherent control methods since the control directly
affects the coherent part of the dynamics, for both unitary
or dissipative evolutions. A different scenario, motivated
by several experimental setups, is where the control vari-
ables affect an auxiliary system which then interacts with
the quantum system to obtain control [18-20]. In this
approach, the controls do not directly affect the evolution
of the system through the coherent part of its dynamics.
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This is the setting considered here. The system S is allowed
to interact with a second system P, called the probe, and
initially they are in an uncorrelated state pg ® pp. It is
assumed that it is possible to modify the initial state of P
before the interaction; therefore, in this case the controls
enter the dynamics of S through pp = pp(u).

Controllability and accessibility of S in this new control
setting have been investigated under the assumption that
the composite system 7' = S + P is closed. In this case, the
dynamics (1) is given by

ps(t, u) = Trp(X(1)ps ® pp(u)XT (1)), (5)

where Trp is the partial trace over the degrees of freedom
of P, X(t) = e 7" is the unitary propagator, and H; =
Hg + Hp + Hgp is the Hamiltonian of 7. The coupling
between S and P is given by the interaction Hamiltonian
H¢p. Necessary and sufficient conditions for controllability
and accessibility have been derived in the case of two-
dimensional S and P [20], under the hypothesis that it is
possible to obtain all the pure states of pp by an arbitrary
choice of the control. In particular, the system S evolving
under (5) is controllable if and only if there is a time ¢ at
which the unitary evolution of the composite system X(z) is
locally equivalent to the SWAP operator. Equivalent alge-
braic conditions of controllability and accessibility can be
given by considering the Cartan decomposition [21] of
X(2).

The assumption that T is a closed system is valid only in
first approximation. In general, there will be an external
environment E interacting with T and, thus, affecting the
controllability properties of S. In the following, we shall
consider a standard model for the environment given by a
large number of decoupled harmonic oscillators and show
that, for appropriate forms of the bath-system interaction,
we can have accessibility and controllability of a system
which would be neither controllable nor accessible as a
closed system. In fact, system S and probe P are assumed
not to be directly interacting and their interaction is com-
pletely due to the presence of the environment. In this
respect, the case treated is the opposite of the one treated
in Ref. [20], where the system and the probe were assumed
interacting and no environment was present.

A model of two systems interacting through the environ-
ment.—We consider the model of the environment E de-
scribed in Ref. [22]. E is given by a set of N decoupled
harmonic oscillators with Hamiltonian

N 1
Hp =Y hw,(b;fb,- + 5), (6)
i=1

where b;r, b; are the creation and annihilation operators,
respectively, associated to the ith oscillator and w; its
angular frequency. This is the bosonic bath model as N —
oo, and the considerations on controllability that will fol-
low do not depend on N. We assume Hy = 0; that is, the
composite system of system and probe 7 = S + P has no

free evolution. We assume a linear coupling between E and
T depending on the positions of the oscillators,

N
Hpr =Y A7 ® gi(b; + b)), (7
i=1

where g; is the coupling constant of the ith oscillator and
Ay an arbitrary Hermitian operator in the Hilbert space of
T. The evolution of a state of § is given by

ps(t,u) = Trp Tre(X(1)ps ® pp(u) ® peXT (1)), (8)

where X(r) = e~ HetHer)t and S, P, and E are all initially
decoupled. The environment is in the thermal state pg. Ay
is a constant of motion since [A;, Hy + Hgr] = 0; there-
fore, it is possible to find the exact analytical expression of
the dynamics. It is convenient to introduce the eigenvalues
and eigenvectors of Ar, Arla;) = a;la;) fori=1,...,4.
Therefore, (8) becomes

4
ps(t,u) = Z Trpla;Xa;l(ps ® pp(u));vi;(),  (9)
ij=1
where we introduced the functions

’)/ij(t) — e*(ozi*aj)Zf(l)Jri(a?*a?)g&([) (10)

and

£(5) = i(hgai )2(1 +27)(1 — cos;),

i=1 i

an

o) = i( 8i >2(a),-t ~ sinw,1),

S\ho;

with 7; the average thermal occupation number for the ith
oscillator [22].

To compute the partial trace in (9), we need to make
some assumptions on the eigenvectors of Ay. We find it
convenient to explore two opposite cases: the case when
all the eigenvectors are factorized states in the Hilbert
space of S + P and the case when they are maximally
entangled states. By exploring these two extreme cases,
we will find examples of evolutions that are not accessible,
accessible but not controllable, or controllable. This last
case will prove our claim that the environment induces
controllability.

Controllability and accessibility properties.—We first
consider the case where the eigenvectors of Ay, |«;), are
factorized states, i.e., |a;) = |a}) ® |aF), with i = (k, [),
k1 =1,2, and the sets {|a?), |a3)} and {|af), [af)} are
orthonormal bases in the Hilbert spaces of S and P, re-
spectively. In this case,

TrPlai><a'j| = 5ln|a£><a%|5 (12)
and, moreover,

(ps ® pp()i; = (P)im(pp()) 10 (13)
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where i = (k, I) and j = (m, n). Thus, Eq. (9) becomes

2

pste) = 3 | (ps)mladiar
k,m=1
2
X (pP(u))nn Y(k,n)(m,n)(t) :|’ (14)

1

n

and initial states pg, diagonal in this basis, do not evolve.
Examples of evolutions displaying this behavior are deter-
mined by interaction terms of the form Ay = Ag + Ap or
Ar = Ag ® Ap, where Ag and Ap are Hermitian operators
acting on the Hilbert spaces of S and P. It follows that, in
these cases, S is neither accessible nor controllable; there-
fore, a necessary condition for accessibility and controll-
ability is that at least one eigenvector of Ay is an entangled
state in S + P.

We assume now that all the eigenvectors are maximally
entangled states, i.e., Bell states

lay) = %(Ia?) ® la?) = ) ® L)),
(15)
las.g) = %(Ia% 8 lal) = o) ® )

in suitable bases {|a?), |a3)} and {|a?), |af)}. It is conve-
nient to use a coherence vector representation for the states
in S and P; that is,

ps=30+5-6°,  pp=31+5-5" 6

where § and p are real vectors in the Bloch spheres of S and
P and 57 are the vectors of the Pauli matrices in S and P.
In this representation, the dynamics (9) takes the form

E([, M) = A(t> EO)I_;(M) + a_)(t, EO)) (17)
where A(z, §) is the matrix
iY13-24(1) 5. Y13-24(1) Sy713+24(l)
—Im| s,¥14-23(t)  ivaz—1a(t) 5 Y23414(0)
=5, Y12434(t)  5,Y34-12(1) iY12-34(1)
(18)
and
83 Y13+24(1)
a(t, sp) = 2 Re| sy¥23+14(1) |- (19)
S:Y12+34(2)

Here we have introduced the notation
Yijr(t) = vi; (1) = yu(), (20)

where the 7y,; have been defined in (10), and 5, =
(s, 5y, 5,) represents the initial state pg.

Assuming that the initial state pp(u) can be an arbitrary
state in the Bloch sphere of P, it follows that, in the
coherence vector formalism, R (pg, ) is an ellipsoid con-
tained in the Bloch sphere of S, centered in d(s, §;), with

the semiaxes given by the singular values of A(z, 5,). A
sufficient condition for accessibility which is generically
satisfied can be given in terms of the eigenvalues of Ay, «;,
i=1,...,4. In particular, the system is accessible if

() — ay)?* # () — a3)%,
() — ay)* # (ay — a3)%, (21)
(a3 — ay)® # (a; — ap)™

To see that this is a sufficient condition for accessibility,
one calculates the 6th derivative with respect to time of the
determinant of the matrix A(, $;) in (18) for r = 0 (all the
lower order derivatives are zero). If condition (21) is
verified, then this derivative is different from zero. If the
system were not accessible, then the matrix A(z, 5;) would
have a singular value equal to zero for every ¢ in an
arbitrarily small interval [0, €). Therefore, detA(z, 53) = 0
for t € [0, €) and its derivatives would all vanish at t = 0.

To find conditions for controllability, we look at the
evolution of the reachable set. This can be quite involved,
since the condition R (pg) = Py depends on the parame-
ters of the model in a nontrivial way. However, our goal is
to show that it is possible to use the environment to have
complete control over the state of the system. We will
exhibit an explicit example. The simplest cases arise
when R(pg, f) = Py at some time 7. This can be obtained
by choosing &y = a, = a3 = 0 and a4 # 0. Since rela-
tions (21) are satisfied, we have accessibility for all o, #
0. Moreover, Egs. (18) and (19) simplify to

1 1 - ’}/r(t) _SZ')/,'(t) S);')’[(f)
Alt, 50) = 3 s;yi() 1 —vy,(6) —s.y:(0) (22)
_sin(t) sti(t) 11— Yr(t)
and
1 Sx
&)(Z’ 50) = 5(] + Yr(t))<sy )7 (23)
sZ
where

v, (t) = e‘“ff @ cos(aZe(r)), o4
y:i(t) = e~ %/ W sin(a3 (1)),

A sufficient condition for controllability is that A(7, 5,) = |
and a(7, 5,) = 0 at some time 7 which is obtained if y,(f) =
—1 and v,(f) = 0; that is,

a3f(i) =0,

aze(d) = 2k, + D), k, € Z.

(25)

The first condition in (25) is satisfied if and only if
cosw;f = 1; that is, w;f = 2ky;m forall i = 1,...N, with
k,; € Z. Using sinw;f =0, for all i =1,...N, in the
second equation, we find a condition on ay:
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1 2 N g 2
—=—"_N'k(=2], 26
ai 2kt 14 2’<hwl~> (26)

with arbitrary k; € Z. Therefore, controllability can be
achieved for an appropriate combination of the parameters
defining the dynamics of the bath (the frequencies w;) and
the parameters defining the interaction (the a;’s, j =
I...,4).

Several physical systems are good candidates for the
implementation of the environment-mediated control pro-
tocol. Following Ref. [13], we propose a pair of quantum
dots in a conducting cavity, but spin- or atom-based qubit
systems could be considered instead. One dot plays the role
of P and it is provided by a double well whose potential can
be externally tuned, so pp can be arbitrarily prepared; the
other dot is the target system S. An electrostatic barrier
between the quantum dots is used to decouple them, Hgp =
0. A small but not vanishing value of Hgp justifies a
perturbative expansion of the interaction Hamiltonian,
leading to an effective interaction with three-body contri-
butions, a necessary condition for having entangled eigen-
vectors for Ay. In this description, two-body interactions
between S and P, in general, appear; however, these terms
do not represent an obstacle to the realization of the control
protocol even if they have been previously excluded. In
fact, they have a positive impact on the controllability of
the system, since they increase the entangling capability
between S and P and then the ability of steering S through
P. However, they complicate the formal treatment. The
environment E is given by the electromagnetic field in the
cavity, whose intensity can be modified to get optimal
conditions [23]. Notice that, for general settings, it is not
always possible to modify the environment parameters in
order to satisfy the conditions (21) and (26).

Conclusions.—We have described a scheme of indirect
control of a quantum system S by means of a probe P, in
the presence of a common environment E. We have as-
sumed that S and P do not evolve in the absence of the
environment, so that their dynamics is only due to the
interaction with E. In this framework, we have proved
that the induced correlations between S and P are, in
some cases, rich enough to allow fotal control of S through
P. These results complement recent research on the crea-
tion of entanglement. They suggest that further investiga-
tion of the control of a quantum system through its
correlations with the environment will prove fruitful.

The model studied here is of interest as a methodology
for contrasting the irreversible and decohering action of the
environment, for several reasons. It is simple, since it
consists of an open-loop procedure: preparation of P,
interaction P-S, and extraction of the state of S. It enables
state purifications that are not obtainable in the open-loop
coherent control framework [15]. Moreover, numerical
computations show that the reachable sets are larger than

the ones in the coherent control case, even if the system is
not controllable. In this approach, the effect of the environ-
ment is not merely suppressed but is constructively used to
achieve the goal of control.
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