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We propose a simple theory for the ‘‘universal’’ scaling law previously reported for the distributions of
waiting times between earthquakes. It is based on a largely used benchmark model of seismicity, which
just assumes no difference in the physics of foreshocks, mainshocks, and aftershocks. Our theoretical
calculations provide good fits to the data and show that universality is only approximate. We conclude that
the distributions of interevent times do not reveal more information than what is already known from the
Gutenberg-Richter and the Omori power laws. Our results reinforce the view that triggering earthquakes
by other earthquakes is a key physical mechanism to understand seismicity.
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Understanding the space-time-magnitude organization
of earthquakes remains one of the major unsolved prob-
lems in the physics of the Earth. Earthquakes are charac-
terized by a wealth of power laws, among them, (i) the
Gutenberg-Richter distribution �1=E1�� (with � � 2=3)
of earthquake energies E [1]; (ii) the Omori law �1=tp

(with p � 1 for large earthquakes) of the rate of after-
shocks as a function of time t since a mainshock [2];
(iii) the productivity law �Ea (with a & 2=3) giving the
number of earthquakes triggered by an event of energy E
[3]; (iv) the power law distribution �1=L2 of fault lengths
L [4]; and (v) the fractal (and even probably multifractal
[5]) structure of fault networks [6] and of the set of earth-
quake epicenters [7]. From an analysis of the probability
density functions (PDF) of waiting times between earth-
quakes in a hierarchy of spatial domain sizes and magni-
tudes in southern California, Bak et al. discussed in 2002 a
unified scaling law combining the Gutenberg-Richter law,
the Omori law, and the fractal distribution law in a single
framework [8]. This global approach was later refined and
extended by the analysis of many different regions of the
world by Corral, who proposed the existence of a universal
scaling law for the PDF H��� of recurrence times (or
interevent times) � between earthquakes in a given region
S [9,10]:

 H��� ’ �f����: (1)

The remarkable finding is that the function f�x�, which
exhibits different power law regimes with crossovers, is
found almost the same for many different seismic regions,
suggesting universality. The specificity of a given region
seems to be completely captured solely by the average rate
� of observable events in that region, which fixes the only
relevant characteristic time 1=�.

The common interpretation is that the scaling law (1)
reveals a complex spatiotemporal organization of seismic-
ity, which can be viewed as an intermittent flow of energy
released within a self-organized (critical?) system [11], for

which concepts and tools from the theory of critical phe-
nomena can be applied [12]. Beyond these general consid-
erations, there is no theoretical understanding for (1).
Under very weak and general conditions, Molchan proved
mathematically that the only possible form for f�x�, if
universality holds, is the exponential function [13], in
strong disagreement with observations. Recently, from a
reanalysis of the seismicity of southern California,
Molchan and Kronrod [14] have shown that the unified
scaling law (1) is incompatible with multifractality, which
seems to offer a better description of the data.

Here, our goal is to provide a simple theory, which
clarifies the status of (1), based on a largely studied bench-
mark model of seismicity, called the epidemic-type after-
shock sequence (ETAS) model of triggered seismicity [15]
and whose main statistical properties are reviewed in [16].
The ETAS model treats all earthquakes on the same footing
and there is no distinction between foreshocks, main-
shocks, and aftershocks: each earthquake is assumed ca-
pable of triggering other earthquakes according to the three
basic laws (i)–(iii) mentioned above. The ETAS model
assumes that earthquake magnitudes are statistically inde-
pendent and drawn from the Gutenberg-Richter distri-
bution Q�m�. Expressed in earthquake magnitudes m /
�2=3�ln10E, the probability Q�m� for events magnitudes
mi to exceed a given valuem isQ�m� � 10�b�m�m0�, where
b ’ 1 and m0 is the smallest magnitude of triggering
events. We also parametrize the (bare) Omori law for the
rate of triggered events of first generation from a given
earthquake as ��t� � �c�=�c� t�1��, with � * 0. ��t�
can be interpreted as the PDF of random times of indepen-
dently occurring first-generation aftershocks triggered by
some mainshock which occurred at the origin of time t �
0. Several authors have shown that the ETAS model pro-
vides a good description of many of the regularities of seis-
micity (see for instance Ref. [17] and references therein).

Our main result is the theoretical prediction (11) below,
which is used to fit Corral’s data in Fig. 1, with good
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agreement. According to Occam’s razor, this suggests that
the previously mentioned results on universal scaling laws
of interevent times do not reveal more information than
what is already captured by the well-known laws (i)–(iii)
of seismicity (Gutenberg-Richter, Omori, essentially), to-
gether with the assumption that all earthquakes are similar
(no distinction between foreshocks, mainshocks, and after-
shocks [18]), which is the key ingredient of the ETAS
model. Our theory is able to account quantitatively for
the empirical power laws found by Corral, showing that
they result from subtle crossovers rather than being genu-
ine asymptotic scaling laws. We also show that universality
does not strictly hold.

Our strategy to obtain these results is to first calculate
the PDF of the number of events in finite space-time
windows [17], using the technology of generating proba-
bility functions (GPF), which is particularly suitable to
deal with the ETAS as it is a conditional branching process.
We then determine the probability for the absence of earth-
quakes in a given time window from which, using the
theory of point processes, is determined the PDF of inter-
event times. Our analysis is based on the previous calcu-
lations of Ref. [17], which showed that, for large areas (L�
tens of kilometers or more), one may neglect the impact of
aftershocks triggered by events that occurred outside the
considered space window, while only considering the
events within the space domain which are triggered by
sources also within the domain.

Generating probability functions of the statistics of event
numbers.—Consider the statistics of the number R�t; �� of
events within a time window �t; t� �	. It is efficiently
described by the method of GPF, defined by �s�z; �� �

hzR�t;��i, where the angular brackets denote a statistical
average over all possible realizations weighted by their
corresponding probabilities. We consider a statistically
stationary process, so that �s�z; �� does not depend on
the current time t but only on the window duration �. For
the ETAS model, statistical stationarity is ensured by the
two conditions that (i) the branching ratio n (or average
number of earthquakes or aftershocks of first generation
per earthquake) be less than 1 and (ii) the average rate ! of
the Poissonian distribution of spontaneous events be non-
zero. The GPF �s�z; �� can then be obtained as [17]
 

�s�z; �� � exp
�
�!

Z 1
0
�1���z; t; ��	dt

�!
Z �

0
�1� z��z; t�	dt

�
; (2)

where ��z; t; �� is the GPF of the number of aftershocks
triggered inside the window �t; t� �	 (t > 0) by a single
isolated mainshock which occurred at time 0 and ��z; �� �
��z; t � 0; ��. The first (respectively, second) term in the
exponential in (2) describes the contribution of aftershocks
triggered by spontaneous events occurring before (respec-
tively, within) the window �t; t� �	.

Ref. [17] previously showed that ��z; t; �� is given by

 ��z; t; �� � G�1���z; t; ��	; (3)

where G�z� is the GPF of the number of first-generation
aftershocks triggered by some mainshock, and the auxil-
iary function ��z; t; �� satisfies to
 

��z; t; �� � �1���z; t; ��	 
��t�

� �1� z��z; ��	 
��t� ��: (4)

The symbol 
 denotes the convolution operator.
Integrating (4) with respect to t yields

R
1
0 ��z; t; ��dt �R

1
0 �1���z; t; ��	dt� �1� z��z; ��	 
 a���, so that ex-

pression (2) becomes
 

�s�z; �� � exp
�
�!

Z 1
0

��z; t; ��dt

�!�1� z��z; ��	 
 b���
�
; (5)

where b�t� �
R
t
0 ��t0�dt0 and a�t� � 1� b�t� � c�

�c�t�� .

Probability of absence of events.—For our purpose, the
probability Ps��� that there are no earthquakes in a given
time window of duration � provides an intuitive and power-
ful approach. It is given by

 P0��� � �s�z � 0; ��

� exp
�
�!

Z 1
0

��t; ��dt�!��!A���
�
; (6)

where ��t; �� � ��z � 0; t; �� and A��� �
R
�
0 a�t�dt ’

c
1�� ��=c�

1��, for �� c.
To make progress in solving (3)–(5), let us expand G�z�

in powers of z:

 G�z� � 1� n� nz� B�1� z�� � . . . ; (7)
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FIG. 1 (color online). Taken from Corral’s Ref. [10], plotting
the scaled [according to (1)] PDF of the recurrence times �
between successive earthquakes in various regions of the world,
scaled by their corresponding seismicity rates �. The PDFs have
been translated for clarity. The thin continuous lines are Corral’s
fits (12) while the thick continuous lines are our prediction (11)
based on ETAS model with the parameters � � 0:03, n � 0:9,
a � 0:76, and � � 1.
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where � � b=� [where � � �3=2�a < 1 is the productiv-
ity exponent when using magnitudes] and B �
n��2� ����� 1���1=��. While we can calculate the
looked-for distribution of recurrence times using the shown
expansion up to order �1� z��, it turns out that truncating
(7) at the linear order is sufficient to explain quantitatively
Corral’s results, as we show below. Using G�z� � 1� n�
nz has the physical meaning that each earthquake is sup-
posed to generate at most one first-generation event (which
does not prevent it from having many aftershocks when
summing over all generations). Indeed, interpreted in
probabilistic terms, G�z� � 1� n� nz says that any
earthquake has the probability 1� n to give no offspring
and the probability n to give one aftershock (of first gen-
eration). This linear approximation is bound to fail for
small recurrence times associated with the large produc-
tivity of big earthquakes and, indeed, we observe some
deviations for the shorter recurrence times below several
minutes as discussed below. The linear approximation is
not intended to describe the statistics of very small recur-
rence times within clusters of events triggered by large
mainshocks, but is approprioate for ‘‘quiet’’ periods of
seismic activity.

The linear approximation bypasses much of the com-
plexity of the nonlinear integral equations (3) and (4) to ob-
tain

R
1
0 ��t;��dt� A���

1�n . Expression (6) becomes (for ��
c)

 Ps��� � exp
�
��1� n�x�

na��

1� �
x1��

�
; (8)

where

 x� ��; a� ��0c��; �� �=�0 �Q�m�
�
L
L0

�
d
: (9)

The average seismicity rate � is given by � � !
1�n , which

renormalizes the average rate ! of spontaneous sources by
taking into account earthquakes of all generations triggered
by a given source: � � !� n!� n2!� . . . . Because of
the assumed statistical independence between event mag-
nitudes, the proportion between spontaneous observable
events and their observable aftershocks does not depend
on the magnitude threshold and the above expression for
the average seismic rate holds also for observable events at
different magnitude thresholds of completeness. Finally,
�0 is the average seismic rate within a spatial domain S0 of
reference with linear size L0, and � takes into account the
dependence on the magnitude threshold m for observable
events and on the scale L of the spatial domain S used in
the analysis. The first term �1� n�x in the exponential of
(8) describes the exponential decreasing probability of
having no events as � increases due to the spontaneous
occurrence of sources. The other term proportional to x1��

takes into account the influence through Omori’s law of
earthquakes that happened before the time window.

Statistics of recurrence times.—Consider a sequence of
times ftig of observable earthquakes, occurring inside a
given seismic area S. The interevent times are by definition

�i � ti � ti�1. The whole justification for the calculation
of Ps��� lies in the well-known fact in the theory of point
processes [19] that the PDF H��� of recurrence times �i is
given by the exact relation

 H��� �
1

�
d2Ps���

d�2 : (10)

Substituting (8) in this expression yields our main theo-
retical prediction for the PDF of recurrence times, which is
found to take the form (1) with
 

f�x� � �an���x�1�� � �1� n� na��x��	2�

 exp
�
��1� n�x�

na��

1� �
x1��

�
: (11)

Expression (11) has a simple physical meaning deduced
from (8). The first term e��1�n�x in (8) controls the expo-
nential decaying probability that there are no earthquakes,
given the possible occurrence of observable spontaneous
events within the time window �t; t� �	. The second term
exp��Cx1��	 results from a double time integration of the
Omori law, one coming from counting the aftershocks of a
given source and one from counting all the possible sources,
within the intervals �t; t� �	 and ��1; t	, respectively.

While our theoretical derivation justifies the scaling
relation (1) observed empirically [9,10], the scaling func-
tion f�x� given by (11) is predicted to depend on the
criticality parameter n, the Omori law exponent �, the de-
tection threshold magnitude m and the size L of the spatial
domain S under study. While �might perhaps be argued to
be universal, this is less clear for n, which could depend on
the regional tectonic context. The situation seems much
worse for universality with respect to the two other pa-
rameters m and L which are catalog specific. It thus seems
that our prediction cannot agree with the finding that f�x� is
reasonably universal over different regions of the world as
well as for worldwide catalogs [9,10].

It turns out that the dependence on the idiosyncratic
catalog-dependent parameters m and L is basically irrele-
vant as long as � is small and n in the range 0:7–1
previously found to be consistent with several other statis-
tical properties of seismicity [17,20]. Note that the condi-
tion that � be small is fully compatible with many
empirical studies in the literature for the Omori law report-
ing an observable (renormalized) Omori law decay
�1=t0:9–1 corresponding to � � 0–0:1 [16]. Figure 2
shows the changes of f�x� when varying the magnitude
threshold from 0 to 3. These changes of f�x� seem to be
within the inherent statistical uncertainties observed in
empirical studies [9,10]. The technical origin of the robust-
ness lies in the fact that, for � � 0:03 say, changing m�
m0 from 0 to 6 amounts to changing � from 1 (m � m0) to
� � 10�6 (m � m0 � 6), which changes �� from 1 to only
�� ’ 0:66. We conclude that our theory provides an expla-
nation for both the scaling ansatz (1) and its apparent
universal scaling function.

We can squeeze more out of (11) to rationalize the
empirical power laws reported by Corral. In particular,
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Corral proposed the following empirical form for f�x�
which, in our notations, reads

 fc�x� �
C�

d���=��

�
x
d

�
g�1

e��x=d�
�
; (12)

where g � 0:67� 0:05, � � 1:05� 0:05, d �
1:64� 0:15 and C ensures normalization [9,10]. Figure 2
shows indeed that expression (12) with Corral’s reported
parameter values for g, �, and d fits (11) remarkably well
quantitatively. In other words, our theory ‘‘explains’’
Corral’s formula by proposing a rigorous derivation of
expression (11) which is for all practical purpose, given
the noise of the data, identical to Corral’s formula (12) for
scaled recurrence times larger than about 10�2. For in-
stance, while the intermediate asymptotics f�x� � x��1 ’
x�0:3 proposed by Corral is absent from our theoretical
expression (11), it can actually be seen as a long crossover
between the power and exponential factors in (11), as
shown by one of the dashed lines in Fig. 2.

Interestingly, expressions (11) and (12) depart from each
other for x & 0:01. Our theoretical distribution f�x� has the
power law asymptotic f�x� � x�1, which is a direct con-
sequence of Omori’s law described explicitly by the first
power law factor in front of the exponential in (11). It is
absent from expression (12). However, as shown in Fig. 1,
its presence is clear qualitatively in real data for the five out
of six data sets extracted from [10] on which we have
superimposed our theoretical prediction (11). Note that
the asymptotic f�x� � x�1 is also supported from Bak
et al.’s law x’�x� ’ const for very small x for the scaled
PDF ’�x� of multiple regions [8]. However, expression
(11) exhibits a visible departure from the data for small

scaled recurrence times x’s [defined in (9)], which could be
attributed to two factors. (i) The linearization of (7)
amounts to neglecting the renormalization of the Omori
law by the cascade of triggered aftershocks [16]. Taking
into account this renormalization effect by the higher-order
terms in the expansion (7) improves partially the fit to the
data shown in Fig. 1. (ii) It is well known that seismic
catalogs are incomplete at short recurrence times [3,21]:
the fact that the data are below our theoretical curves is
exactly what one should expect given this time incomplete-
ness since the empirical PDF is expected to undersample
the number of recurrences times as short times.

Finally, our detailed study shows that comparing (11)
with data provides constraints on the parameter n: the data
definitely exclude small values of n and seem best compat-
ible with n � 0:7–1, in agreement with previous con-
straints [17] suggesting that earthquake triggering is a
dominant process.
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FIG. 2 (color online). Scaling function f�x� defined in (11) for
n � 0:8, � � 0:03, a � 0:76 and for two values of m�m0 �
0; 3 corresponding to a 1000-fold variation of � � 1; 10�3. In
these synthetic examples, we assume that the spatial domain S0

corresponds to an average seismicity rate �0 ’ 1 per day, that the
characteristic time scale of the Omori law is c ’ 10 sec., so that
�c ’ 10�4. Then, for � ’ 0:03, we have a ’ 0:76. The obtained
function f�x� is compared with Corral’s empirical fitting func-
tion fc�x� defined in (12) with g � 0:7, � � 1:05, d � 1:7, and
C � 0:78. The dashed lines are the power laws �x�0:3 and x�1.
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