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We show that the solvation free energy of a complex molecule such as a protein can be calculated using
only four geometrical measures of the molecular structure and corresponding thermodynamical coef-
ficients. We compare results from this morphometric approach to those obtained by an elaborate
statistical-mechanical theory in liquid state physics for a large variety of different structures of protein
G and find excellent agreement. Since the computational time is drastically reduced, the new approach
provides a practical and efficient way for calculating the solvation free energy which can be employed
when this quantity has to be calculated for a large number of structures, as in a simulation study of protein
folding.
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The solvent has enormous effects on the structure and
properties of flexible, complex polyatomic molecules im-
mersed in it. Among a variety of such molecules, a protein
is undoubtedly the most important object in physics, chem-
istry, and biology. It is quite large, and the candidate
structures which could be stabilized in local free energy
minima are just innumerable. Nevertheless, the protein
folds into a unique, native structure. Currently, the analysis
on the structural stability of proteins and the prediction of
the native structure is one of the most enthusiastic subjects
[1]. The protein itself aims for the structure that corre-
sponds to the global minimum of its intramolecular free
energy Fprotein, whereas the solvent tries to force the pro-
tein to form the structure minimizing the solvation free
energy Fsolvation. The structural stability is determined by
the complicated interplay of these two factors [2,3]. A key
point is that the solvent and the protein must be modeled on
the same level because the marginal balance of Fprotein and
Fsolvation is essential. If one employs a sophisticated model
only for the protein and regards the solvent as a continuum,
for example, the predicted results would turn out rather
unreliable.

Despite the crucial importance of Fsolvation of the protein
in a given structure, relatively little is known about effec-
tive ways of calculating this quantity. Calculations by
molecular dynamics computer simulations are limited to
small solute molecules and infeasible for large polyatomic
molecules like proteins. A practicable means of calculation
is the three-dimensional (3D) version [4–6] of the integral-
equation theory, an elaborate statistical-mechanical theory
in liquid state physics [7]. It is capable of treating the
atomic details of the given protein structure immersed in
an infinitely large number of solvent molecules and calcu-
lating the ensemble-averaged solvent configuration in
equilibrium with the structure. However, it has the disad-
vantage of large computer storage demands. Further, the
long computation time required becomes serious when one

attempts to calculate Fsolvation for a huge number of differ-
ent, candidate structures.

In this Letter, we demonstrate the remarkable power of
our new morphometric method [8] when applied to the
calculation of Fsolvation of a large, complex molecule such
as a protein in a given structure, if the molecule-solvent
and solvent-solvent interactions are specified. To this end,
we study how the mesoscopic morphometric approach
fares compared to the microscopic 3D integral-equation
theory. We compare the solvation free energy obtained by
these two very distinct approaches for 600 different struc-
tures of protein G, which is a protein with 56 residues and
855 atoms. Results from the 3D integral-equation theory
serve as a benchmark for the morphometric approach. In
the latter, Fsolvation is determined by only four geometrical
measures of the protein structure and corresponding ther-
modynamical coefficients [8]. This separation of Fsolvation

into geometrical and thermodynamic coefficients allows
for an extremely fast calculation. Here we report that the
morphometric approach predicts results which are almost
indistinguishable from those of the 3D integral-equation
theory in a computation time that is over 4 orders of
magnitude shorter.

We start by recalling the basic aspects of the 3D integral-
equation approach, because we wish to highlight the re-
markable difference between this theory and the morpho-
metric approach described later. One great advantage of the
3D integral-equation theory is that details of the poly-
atomic structure of a solute molecule can explicitly be
taken into account. The theory is briefly described for the
cases where the solvent is a simple fluid.

A solute molecule, denoted as I, in a prescribed structure
is immersed into a solvent of small spheres. The bulk
density of the solvent �S is given. The solute I consists
of a set of fused atoms. The basic equations are expressed
in terms of the correlation functions, the radial-symmetric
solvent-solvent (SS) and 3D solute-solvent (IS) correlation
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functions. There are two principal equations. The first one
is the IS Ornstein-Zernike equation [7] and is expressed in
Fourier space as

 WIS�kx; ky; kz� � �SCIS�kx; ky; kz�HSS�k�; (1)

where the capital letters C, H, and W represent the Fourier
transforms of c, h, and w � h� c, respectively. c is the
direct and h is the total correlation function. k2 � k2

x �

k2
y � k2

z . The second equation, which is the closure rela-
tion, is expressed in real space as

 cIS�x; y; z� � expf��uIS�x; y; z�g � expfwIS�x; y; z�

� bIS�x; y; z�g � wIS�x; y; z� � 1; (2)

where uIS denotes the solute-solvent interaction potential
and � � 1=�kBT� with Boltzmann’s constant kB and the
temperature T. Here we employ the HNC approximation
where the bridge function b is set to zero [7]. The reliabil-
ity of this approximation has been verified [9].

The two principal equations are numerically solved on a
cubic grid. The center of mass of the protein molecule is
chosen as the origin of the coordinate system. The numeri-
cal procedure is briefly summarized as follows. In the
initialization, the solute-solvent interaction uIS�x; y; z� is
calculated at each grid point and wIS�x; y; z� is set to zero.
Then follows a loop in which the pair direct correlation
function cIS�x; y; z� is calculated from Eq. (2) and trans-
formed into CIS�kx; ky; kz� using the 3D fast Fourier trans-
form (3D-FFT). From this, with the help of Eq. (1), one
obtainsWIS�kx; ky; kz� and transforms it towIS�x; y; z� using
the inverse 3D-FFT. This loop is iterated until the input and
output functions become identical within convergence
tolerance.

In principle, this microscopic approach is capable of
including detailed chemical information about the
protein-solvent interaction by specifying the interaction
potentials between each atom of the protein with the
solvent. However, in the present study where we focus
mainly on the power of the morphometric approach and
not so much on the results, we wish to keep the model as
simple as possible, while treating the polyatomic structure
and the solvent on equal footing. We model the solvent
molecules as hard spheres and the solute molecule as a set
of fused hard spheres. Because of the hard-core nature of
the interaction uIS�x; y; z� we consider here, the Boltzmann
factor expf��uIS�x; y; z�g is zero on each grid point where
a solvent particle and at least one of the atoms overlap.
Otherwise, the Boltzmann factor is unity. For most calcu-
lations, the grid spacing (�x, �y, and �z) is set at 0:2dS
and the grid resolution (Nx � Ny � Nz) is chosen to be
256� 256� 256. It has been verified that the spacing is
sufficiently small and the box size (Nx�x, Ny�y, and
Nz�z) is large enough to get a good overview and to avoid
numerical artifact due to finite-size effects. However, we
will also discuss how the results are affected if the grid
spacing is reduced.

The microstructure of the solvent near solute I is de-
scribed by gIS�x; y; z�where g � h� 1, or equivalently, by
the density profile ��x; y; z� � �SgIS�x; y; z�. Once the sol-
vent structure is known, the solvation free energy (SFE) of
I, which we denote by F3D-HNC

solvation � ��I, is obtained from
the 3D integration [5,6] expressed by
 

���I � �S
ZZZ �hIS�x; y; z�2

2
� cIS�x; y; z�

� hIS�x; y; z�
cIS�x; y; z�

2

�
dxdydz: (3)

The great advantage of this approach is that we have
access to microscopic information of the solvent distribu-
tion around the solute and to the solvation free energy
Fsolvation within the same theoretical framework. How-
ever, this approach is computationally quite demanding
because of the lack of spacial symmetry in the problem
and the iterative numerical calculation using 3D grids.

We employ our 3D integral-equation theory in order to
generate a set of benchmark data for a large variety of
structures of protein G. To this end, we calculate the
solvation free energy of 600 structures of protein G in a
hard-sphere solvent. Those structures were taken from
local-minimum states of the energy function found in a
replica-exchange molecular dynamics simulation using all-
atom potentials [10]. We used structures generated by
computer simulations to avoid unrealistic overlaps of the
polypeptide chain and energetically unreasonable struc-
tures. The 600 conformations cover a very wide range of
different structures. The solvent diameter �S � 2:8 �A and
density �S�3

S � 0:7 are set to mimic corresponding values
of water [6]. The diameters of the atoms in the protein are
the Lennard-Jones diameters of AMBER99.

In Fig. 1 we show the resulting solvation free energy
F3D-HNC

solvation calculated by the 3D integral-equation approach,
as a function of the radius of gyration for the set of 600
structures of protein G. It is the variation in the solvation
free energy from structure to structure, rather than its
absolute value, that is important. As a general trend, one
can identify that a structure corresponding to a relatively
low solvation free energy possesses a small radius of
gyration. This indicates that compact structures are favored
by the solvent. A fragmented protein structure with a large
radius of gyration would be susceptible to external forces
and could easily change its structure. This, however, would
hinder the protein to fulfill its biological function, which
requires a robust structure.

The connection between the solvation free energy and
the radius of gyration is substantiated by the structures
shown as an illustration in Fig. 1. The structure with the
lowest solvation free energy is compact and has a small
volume V and surface area A. Another structure, explicitly
depicted in Fig. 1, is less compact and thereby has a larger
volume and surface area and corresponds to a larger sol-
vation free energy. In contrast, we also show a random coil
structure of protein G, with a much larger volume and
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surface area, corresponding to a highly increased solvation
free energy.

We now turn to our second approach, which is based on
the morphometric form of thermodynamical potentials [8].
The idea of this approach is to predict the solvation free
energy of the protein in a fixed structure based on only four
geometrical measures and corresponding thermodynami-
cal coefficients:

 Fmorph
solvation � pV � �A� �C� ��X; (4)

where V, A, C and X are the volume excluded by the
protein, the surface area accessible to the solvent and the
integrated mean and Gaussian curvatures of the accessible
surface, respectively. The corresponding thermodynamic
coefficients are the pressure p, the surface tension � of the
solvent at a planar wall, and two bending rigidities � and ��
which account for curvature effects [8]. The geometrical
measures C and X are defined by

 C �
Z
@V
HdA; and X �

Z
@V
KdA (5)

as the integrated (over the surface area A) mean and
Gaussian curvatures H � �1=RI � 1=RII�=2 and K �
1=�RIRII�, respectively. RI and RII are the two principal
radii of curvature. In order to be able to uniquely calculate
these geometrical measures we have to define the surface
of the protein first. We employ the definition of the solvent
accessible surface due to Lee and Richards [11] with the
same hard-sphere diameters for the atoms of the protein
and the solvent as employed in the integral-equation ap-
proach. The area A is then determined by the surface that is
accessible to the centers of solvent spheres. All the geo-

metrical measures and the thermodynamic coefficients are
calculated with respect to this definition. V is the volume
that is enclosed by the surface area. For a given structure of
the protein, both A and V can be calculated exactly [12,13].
It is interesting to note that A and V are connected via a
normal derivative

 A � @"V � lim
"!0

V" � V
"

; (6)

where V" is the volume of the structure resulting by in-
creasing the radius of each sphere by "! 0.

The calculation of the integrated curvatures is more
involved. In addition to the surface contributions to C
and X, there are contributions Cl and Xl from lines of
intersecting spheres and point contributionsXp where three
such lines meet [14]. The surface terms are readily calcu-
lated, as H and K are constant on the surface.

The line contributions Cl and Xl can be calculated by
considering the curvature in a parallel surface displaced by
an infinitesimal amount " from the molecular surface.
Following Ref. [14] we find

 Cl � �
�Rc

2
��1 � �2�; Xl � ���sin�1 � sin�2�;

(7)

where � is the angular length, �Rc the arc length of the
intersection, and �1 and �2 the angles between the spheres
and the plane of intersection as defined in Refs. [12,13].
The contribution Xp is the solid angle spanned by the
surface normals at the intersection of three lines [14].

An important check for the correctness of the numerical
calculation of the integrated curvatures is the property of
X, the integrated Gaussian curvature, or Euler character-
istics. X � 4�N, N � 0;�1;�2; . . . is a topological in-
variant and one finds N � 1� Nh � Nc, where Nh counts
the number of holes and Nc the number of cavities. To
illustrate the meaning of these numbers, consider a torus,
which has Nh � 1 and Nc � 0, so that its Euler character-
istics vanish, and a hollow sphere, which has Nh � 0 and
Nc � 1, so that X � 8�.

The morphometric form of the solvation free energy,
Eq. (4), separates the geometry and the thermodynamical
coefficients. This feature allows one to determine the val-
ues of p, �, � and �� in simple geometries. We determine
these coefficients from calculations of the solvation free
energy of spherical solutes with varying radius using a
radial-symmetric integral-equation implementation. In
principle, these coefficients can be determined using an
arbitrary theoretical approach like integral-equation and
density-functional theories or computer simulations. The
nature of the solvent-solvent and protein-solvent interac-
tion is reflected in the values of p, �, � and ��.

For a hard-sphere solvent, we calculate the solvation free
energy for the same structures of protein G that we studied
using the 3D integral-equation approach. Figure 2 shows
the deviation D � 100�F3D-HNC

solvation � F
morph
solvation�=F

3D-HNC
solvation of

FIG. 1. Benchmark data F3D-HNC
solvation obtained from the 3D

integral-equation theory for 600 different structures of protein
G in a hard-sphere solvent as a function of the radius of gyration.
We use a set of complex and quite distinct structures, as
illustrated explicitly by three structures. For these calculations,
we used a 3D grid with �x � �y � �z � 0:2dS and Nx �
Ny � Nz � 256.

PRL 97, 078101 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
18 AUGUST 2006

078101-3



the solvation free energy obtained by our morphometric
approach from that presented in Fig. 1 obtained from the
integral-equation theory for 600 structures of protein G.
Although our two approaches are quite different in nature,
the agreement between the 3D integral-equation theory and
the morphometric approach is extremely good: the devia-
tion jDj is less than 0.7% in all cases. For most structures,
the deviation is significantly smaller than this. This agree-
ment is very encouraging because the computing time for
Fsolvation is reduced by more than 4 orders of magnitude:
The calculation for one structure of protein G is finished in
less than 1 sec on a small personal computer.

To test if this deviation has a systematic origin or is
numerical due to the grid size, we perform additional 3D
integral-equation calculations for two representative struc-
tures. These calculations are done with Nx � Ny � Nz �
512 and �x � �y � �z � 0:1dS, which is the largest
possible grid resolution on our workstation. We find that
the agreement between the results of our morphometric
approach and the integral-equation theory improves sig-
nificantly. For example, the deviation decreases from
0.41% to 0.05% for one structure and from 0.29% to
�0:14% for the other.

In the model system we have employed here, all the
system configurations share the same energy, and the be-
havior is purely entropic in origin. Nevertheless, the native
structure is one of the most stable structures. This indicates
the crucial importance of the solvent entropy in the struc-

tural stability of a protein [6]. We have recently found,
however, that the hard-sphere solvent does not lead to the
lowest solvation free energy of the native structure. There
are some structures with lower solvation free energies.
Clearly, water behaves differently than a hard-sphere fluid.
It is easy to change the solvent properties in the morpho-
metric approach, by recalculating the thermodynamic co-
efficients for different solvent-solvent and solute-solvent
interactions. Preliminary calculations indicate that an addi-
tional attraction between solvent particles has significant
effects on the solvation free energy and favors the native
structure the most.

Having demonstrated the power of the morphometric
approach for calculating Fsolvation for a complexly shaped
molecule like a protein in different structures, we believe
that further progress in understanding protein folding is
within reach. Furthermore, this approach sheds new light
on the extremely difficult problem of predicting the native
structure of a protein.
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FIG. 2. The deviation D between Fmorph
solvation (the solvation free

energy calculated by our morphometric approach) and F3D-HNC
solvation

(the benchmark data from the 3D integral-equation theory) for
600 different structures shown in Fig. 1. Although the theories
we compare are quite different, we find excellent agreement
between their results. If we employ a even finer 3D grid, the
magnitude of D reduces further.
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