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The theoretical limit of the minimal magnetization switching field and the optimal field pulse design for
uniaxial Stoner particles are investigated. Two results are obtained. One is the existence of a theoretical
limit of the smallest magnetic field out of all possible designs. It is shown that the limit is proportional to
the damping constant in the weak damping regime and approaches the Stoner-Wohlfarth (SW) limit at
large damping. For a realistic damping constant, this limit is more than 10 times smaller than that of so-
called precessional magnetization reversal under a noncollinear static field. The other is on the optimal
field pulse design: if the magnitude of a magnetic field does not change, but its direction can vary during a
reversal process, there is an optimal design that gives the shortest switching time. The switching time
depends on the field magnitude, damping constant, and magnetic anisotropy.
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Fabrication [1,2] and manipulation [3] of magnetic
single-domain nanoparticles (also called the Stoner parti-
cles) are of great current interests in nanotechnology and
nanosciences because of their importance in spintronics.
Magnetization reversal, which is about how to switch a
magnetization from one state to another, is an elementary
operation. One important issue is how to switch a magne-
tization fast by using a small switching field. The switching
field can be a laser light [4], or a spin-polarized electric
current [5,6], or a magnetic field [7,8]. Many reversal
schemes [9,10] have been proposed and examined.
However, the issue of theoretical limits of the smallest
switching field and the shortest switching time under all
possible schemes are not known yet. Here we report two
theorems on the magnetic-field induced magnetization
reversal for uniaxial Stoner particles. One is about the
theoretical limit of the smallest possible switching field.
The other is about the optimal field pulse for the shortest
switching time when the field magnitude is given.

Magnetization M = M of a Stoner particle can be
conveniently described by a polar angle 8 and an azimuthal
angle ¢, shown in Fig. 1(a), because its magnitude M does
not change with time. The dynamics of magnetization unit
direction m is governed by the dimensionless Landau-
Lifshitz-Gilbert (LLG) equation [3,8],

d N R
( +a2)d—’"f= —im Xk, — am X (X k), (1)

where « is a phenomenological damping constant whose
typical value ranges from 0.01 to 0.22 for Co films [11].

The total field i;, =h+ i;,- comes from an applied field h

and an internal field };i = —V;w(i) due to the magnetic
anisotropic energy density w(m). Different particle is char-
acterized by different w(s72). In our analysis, we assume it
uniaxial with the easy axis along the z direction, w =

w(cosh) and h; = — aa’gf;zg))ﬁ = f(cosh)3.
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According to Eq. (1), each field generates two motions, a
precession motion around the field and a damping motion
toward the field as shown in Fig. 1(a). In terms of # and ¢,
Eq. (1) can be rewritten as [3]

(1+a®)0 = hy + ahy — af(cosb)sind,
(1 + a?)sinfd = ahy — hy + f(cosd) siné.

Here hy and h, are the field components along é,— and
e — directions of m, respectively.

The switching problem is as follows: in the absence of
an external field, the particle has two stable states, i,
(point A) and —7m, (point B) along its easy axis as shown
in Fig. 1(b). Initially, the magnetization is i, and the goal
is to reverse it to —#m, by applying an external field. In our
analysis, Gilbert damping constant « and the anisotropy
f(cos®) are the fixed specifications of the problem, and
only applied field variations are investigated. This is in
contrast with earlier studies [12] where completely differ-
ent analysis was performed. There are an infinite number
of paths that connect the initial and the target state. L1 and

B

FIG. 1. (a) Two motions of magnetization m under field h:
—i X I and — X (7 X i) describe the precession and dis-
sipation motions, respectively. (b) Points A and B represent the
initial and the target states, respectively. The solid curve L1 and
dashed curve L2 illustrate two possible reversal routes.
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L2 in Fig. 1(b) are two examples. Each of these paths can
be used as a magnetization reversal route (path). Let ﬁ“(t)
be the magnetic field pulse of design s along magnetization
reversal route L. To proceed, a few quantities must first be
introduced.

Definition of switching field H**.—The switching field
HEs of design s along route L is defined to be the largest
magnitude of #%*(¢) for all 7, HL* = max{|h"™*(z)|; V1.

Definition of minimal switching field H" on reversal
route L.—The minimal switching field along route L is
defined to be the smallest value of H“* for all possible
designs s that will force the magnetization to move along
L,ie., H* = min{H"*; Vs}.

Definition of theoretical limit of minimal switching field
H,.—The switching field limit H, is defined as the smallest
value of HY out of all possible routes, i.e., H, =
min{H"; VL}.

If the applied field is restricted to be static, reversal of a
magnetization from A to B can only go through so-called
“ringing motion”’ [7,8]. The corresponding switching field
forms so-called modified Stoner-Wohlfarth (SW) astroid
[7]. Strictly speaking, these switching fields are not H that
exists only for those ballistic reversal paths [8]. With the
above remark about a static field, we come back to the first
issue about H..

Theorem 1.—For a given uniaxial magnetic anisotropy
specified by f(cosf) = — %, the theoretical limit of
the minimal switching field is given by H, = ﬁQ,
where QO = max{f(cos6)sind}, 6 € [0, 7].

Proof.—To find the lowest possible switching field, it
should be noticed that field along the radius direction #, of
an external field does not appear in Eq. (2). Thus one can
lower the switching field by always putting /2, = 0, and the

magnitude of the external field is h = |k} + h%ﬁ.

According to Eq. (2), § and ¢ are fully determined by 7,
and hy and vice versa. It can be shown that h2 can be

expressed in terms of 6, ¢, 6, and d)

g=n
= (1 + a?)6? + 2af(cosd) sinfd + (a sinfh)?
+ sin?[¢ — f(cosh) (3)

Here g(6, 6, ) does not depend explicitly on ¢ for a
uniaxial model.

In order to find the minimum of g, it can be shown that ¢
must obey the following equation:

$ = flcost) /(1 + a?), )
. . 0 2
which is from g—i 5,6) = 0 and 375% 6,6 > 0.

Equation (4) is a necessary condition for the smallest
minimal switching field. This can be understood as fol-
lows. Assume H_. is the minimal switching field along
reversal path L described by 6(¢) = 6,(¢) and ¢(r) =
¢(?) [i.e., H, is the maximum magnitude of the external

field that generates the motion of 6, () and ¢ (1)]. If ¢(z)
does not satisfy Eq. (4), then one can construct another
reversal path L™ specified by 6(r) = 0,(r) and ¢(r) =
&,(1), where ¢, (1) satisfies Eq. (4). Because 0(¢) and 6
are exactly the same on both paths L and L* at an arbitrary
time ¢, the values of g(¢) shall be smaller on L* than those
on L at any ¢. Thus, the maximum g* = (H%)?> of g on L*
will be also smaller than that (H2) on L, i.e., H: < H,. But
this is in contradiction with the assumption that H,. is the
theoretical limit of the minimal switching field. Hence,
¢(t) must obey Eq. (4) on the optimal path that generates
the smallest switching field, H..
Substituting Eq. (4) into Eq. (3), we have

h? =[V1 + a6 + af(cosh)sinf/v1 + a?2.  (5)

In order to complete a magnetization reversal, the tra-
jectory must pass through all values of 0 = 0 = 7. In
particular, it must pass through whatever value of 6 in
that range maximizes f(cosf)sinfd on that range. At
that maximizing value of 6, the trajectory must be such
that 6 is nondecreasing, that is = 0, so that the trajec-
tory is proceeding in the correct direction. Substituting
these constraints into Eq. (5), we see that at that point

in the trajectory, & must be at least \/%, where

O = max{f(cosf) sinf}.—QED.

To have a better picture about what this theoretical limit
H, is, we consider a well-studied uniaxial model, w(m) =
—km? /2, or f = kcosf. Itis easy to show that the largest &
is at § = 7r/4 so that Q = k/2, and

H — o k
1T+ a22

At small damping, H, is proportional to the damping
constant. The result in the limit of @ — 0 coincides with
the switching field in Ref. [9] where the time-dependent
field always follows the motion of magnetization. At the
large damping, H, approaches the SW field [8] when a
noncollinear static switching field is 135° from the easy
axis. The solid curve in Fig. 2 is H, versus «. For com-
parison, the minimal switching fields from other reversal
schemes are also plotted. The dotted line is the minimal
switching field when the applied field is always parallel to

(6)

=== SW limit
- - - static field at 135" to the easy axis
-+ field along motion of magnetization |
--@-- circularly polarized microwave
= theoretical limit H_
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o

FIG. 2. The switching field #. vs damping constant « under
different reversal schemes.
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the motion of the magnetization [9]. The curve in square
symbols is the minimal switching field when a circularly
polarized microwave at optimal frequencies is applied [9].
The dashed line is minimal switching field under a non-
collinear static field of 135° to the easy axis. It saturates to
the SW field beyond «, [7,8].

Although the theoretical limit of the switching field is
academically important because it provides a low bound to
the switching field so that one can use the theorem to
evaluate the quality of one particular strategy, a design
using a field at the theoretical limit would not be interesting
from a practical point of view because the switching time
would be infinitely long. Thus, it is more important to
design a reversal path and a field pulse such that the
reversal time is the shortest when the field magnitude H
(H > H,) is given. An exact result is given by the follow-
ing theorem.

Theorem 2.—Suppose a field magnitude H does not
depend on time and H > H.. The optimal reversal path
(connects # = 0 and § = ) that gives the shortest switch-
ing time is the magnetization trajectory generated by the

following field pulse /(7),
hy(t) = aH/N1 + o?,

Proof.—The reversal time from A to B [Fig. 1(b)]is T =
I df/6. According to Eq. (2), one needs (hy + ahy) to
be as large as possible in order to make # maximal at an
arbitrary 6. Since H> = h? + h3 + hé, one has the follow-

ing identity:

h.(t) = 0,
(7

(1 + a®)H? = (1 + a®)h? + (hy + ahy)? + (hy
— ahy)’ (8)

Thus, (hy + ahy) reaches the maximum of V1 + a’H
when h, = 0 and hy = ahd,, which lead to Eq. (7), are
satisfied. —QED

The optimal shape of field pulse (7) appears to depend
only on the Gilbert damping constant « and not on f(cos#).
However, those expressions provide the components of
field magnitude in a coordinate system relative to the
time-varying direction of m. The magnetic anisotropy
f(cosh) in part determines the trajectory of m which in
turn determines the optimal pulse shape when combined
with the expressions of Eq. (7). It should be pointed out
that if they were to change f(cos) and nothing else, the
time-dependent field pulse would be different.

Under the optimal design of (7), ¢(z) and 6(¢) satisfy,
respectively, Eq. (4) and

6 = H/V1 + a® — af(cosf)sinf/(1 + a?). (9)

For uniaxial magnetic anisotropy w(m) = —km?/2, it is
straightforward to integrate Eq. (9), and to find the reversal
time 7 from A to B [Fig. 1(b)],

2 (e + 7

T = .
k Ja(a® + DH?JKZ — a2

(10)

In the weak damping limit &« — 0, T = 7r/H while in the
large damping limit a« — oo, T = \/%1{2/4 — 00. For the
large field H — oo, T =~ Y&>117 inversely proportional to
the field strength. Thus, it is better to make « as small as
possible. Then the critical field is low, and the speed is fast
(T ~ 7/H). Figure 3 shows the field dependence of the
switching time for & = 0.1, where T and H are in the units
of 2/k and k/2, respectively.

How much could the so-called ballistic (precessional)
reversal strategy [7,13] be improved? To answer the ques-
tion, let us compare the switching field and time in the
ballistic reversal with those of theoretical limits for uniax-
ial magnetic anisotropy w(in) = —km?2/2 and a = 0.1.
According to Ref. [8], the smallest switching field (in
unit of k/2) for the ballistic connection is H = 1.02 ap-
plied in 97.7° to the easy z axis, and the corresponding
ballistic reversal time (in unit of 2/k) is T = 5.87. On the
other hand, the theoretical limit for the minimal switching
field is H. = 0.1 from Eq. (6), about one tenth of the
minimal switching field in the ballistic reversal [8]. For
realistic value of « of order of 0.01, the difference between
experimentally achieved low switching field and the theo-
retical limit is of the order of hundred times. Thus there is a
very large room for an improvement. It is also possible to
switch a magnetization faster than that of the conventional
ballistic reversal by using a smaller field. For example, to
achieve a reversal time of 7 = 5.87 along the optimal
route, the field magnitude can be as lower as H = 0.547
(instead of H = 1.02) according to Fig. 3. To illustrate
what scale of theoretical reversal is being demonstrated
here, let us consider bulk fcc Co parameters of anisotropy
constant K = 2.7 X 10° erg/cm?® and saturation magneti-
zation M; = 1445 emu/cm? [14]. Thus the dimensionless
reversal time of 7 = 5.87 and switching field H = 0.547
correspond to 178ps and 0.17, respectively.

The field pulse given in Eq. (7) requires a constant
adjustment of field direction during the magnetization

10

T (2/K)

0.0 05 1.0 15 2.0
H (k/2)

FIG. 3. The field dependence of T under the optimal field pulse
Eq. (7) for @ = 0.1. The field is in the unit of k/2 and the unit for
time is 2/k.
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FIG. 4. Time dependence of different field components, 6 and
¢, of i for uniaxial magnetic anisotropy w(ii) = —km?/2 with
a = 0.1 and H = 0.547 when the reversal path is optimal. The
reversal time is 7 = 5.87. (a) x, y, and z components of magnetic

field. (b) 6(7). (c) &(1).

reversal. To have a better idea about the type of fields
required, we plot in Fig. 4(a) the time dependence of x,
v, and z component of the field while its magnitude is kept
at H = 0.547. The time dependence of 6 and ¢ is also
plotted in Fig. 4(b) and 4(c).

Although the Stoner-Wohlfarth problem of magnetiza-
tion reversal for a uniaxial model is of great relevance to
the magnetic nanoparticles, it is interesting to generalize
the results to the nonuniaxial cases. So far, our results are
on the magnetic-field induced magnetization reversal; it
will be extremely important to generalize the results to the
spin-torque induced magnetization reversal. It should also
be pointed out that it is an experimental challenge to create
a time-dependent field pulse given by Eq. (7) in order to
implement the optimal design reported here. This chal-
lenge could be met if a device sensitive to the motion of
a magnetization can be found because a coil can be at-
tached to the device to generate the required field. In
principle, one may also use three mutually perpendicular
coils to generate a given time-dependent field. This can be
accomplished by controlling time-dependent electric cur-
rents through the coils.

In conclusion, the theoretical limit of the magnetization
switching field for uniaxial Stoner particles is obtained.
The limit is proportional to the damping constant at weak
damping and approaches the SW field at large damping.
When the field magnitude is kept to a constant, and the
field direction is allowed to vary, the optimal field pulse
and reversal time are obtained.
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