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The two-level systems (TLSs) naturally occurring in Josephson junctions constitute a major obstacle for
the operation of superconducting phase qubits. Since these TLSs can possess remarkably long decoher-
ence times, we show that such TLSs can themselves be used as qubits, allowing for a well controlled
initialization, universal sets of quantum gates, and readout. Thus, a single current-biased Josephson
junction can be considered as a multiqubit register. It can be coupled to other junctions to allow the
application of quantum gates to an arbitrary pair of qubits in the system. Our results indicate an alternative
way to realize superconducting quantum information processing.
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Several advances in the field of quantum information
processing using superconducting circuits have been made
in recent years [1]. A major obstacle to further advances,
however, is the problem of decoherence. In particular,
recent experiments on current-biased Josephson junctions
(CBJJs) revealed resonances that suggest the presence of
quantum two-level systems (TLSs) that are strongly
coupled to the CBJJ when it is biased near one of those
resonances [2,3]. So far, the TLSs have been treated as a
nuisance that prevent the operation of the CBJJ as a qubit
near any resonance. In this Letter, we show that the TLSs
themselves can be used as qubits. The CBJJ then acts as a
bus, enabling state initialization, one- and two-qubit op-
erations, and readout. Moreover, the results of Refs. [2,3]
show that the decoherence times of the TLSs are longer
than those of the CBJJ. That property can be used in a
scalable design such that the decoherence time of the entire
system scales as the CBJJ decoherence time TCBJJ

d , as
opposed to the usual TCBJJ

d =N, where N is the number of
CBJJs in the circuit. Our results therefore demonstrate an
alternative way to achieve a scalable qubit network in a
superconducting system, in addition to illustrating a
method to perform multiqubit experiments with available
experimental capabilities.

Model.—The phase qubit, which is comprised of a
single CBJJ, is one of the simplest experimental imple-
mentations of a qubit in superconducting systems [1,4].
The working states j0i and j1i are the (metastable) ground
and first excited states in a local minimum of the wash-
board potential produced by the CBJJ. The (undriven)
system is described by the Hamiltonian

 H �
Q̂2

2C
�
Ic�0

2�
cos’̂�

Ib�0

2�
’̂ �

@!10

2
�z: (1)

Here Q̂ is the operator of the charge on the junction, C is
the junction’s capacitance, ’̂ is the operator of the
Josephson phase difference, and Ic and Ib�� Ic� are the
critical and bias currents, respectively. The nonlinearity

of the potential allows one to consider only the two low-
est energy states. The Pauli matrix �z operates in the
subspace fj0i; j1ig. The transition frequency !10 � !p �

�2�Ic=�0C�
1=2�1� j2�1=4, the plasma frequency in the

biased junction (the corrections due to nonlinearity are
�10%), and j � Ib=Ic (see, e.g., [4]). The terms in the
Hamiltonian proportional to �x and �y, which enable a
complete set of one-qubit gates, appear in the rotated frame
of reference when applying microwave pulses of bias
current at the resonance frequency, Ib ! IDC � I�wc�t�	
cos�!10t� � I�ws�t� sin�!10t�, as explained in Ref. [4].

The simplicity of the qubit design and manipulation
contributed to its successful experimental realization
[1,2] and a spectroscopic demonstration of the formation
of entangled two-qubit states [5]. Nevertheless, the experi-
ment in Ref. [2] also demonstrated that TLSs present in the
tunneling barrier tend to destroy the coherent operation of
the qubit (such as Rabi oscillations).

Such TLSs are ubiquitous in solid state systems wher-
ever disorder is present and can be thought of as groups of
atoms capable of tunneling through a potential barrier
between two degenerate configurations. They are currently
believed to be the main source of 1=f noise in solids.

The observed coherent oscillations between a TLS and a
phase qubit [6] proved that a TLS can be considered as a
coherent quantum object described by the pseudospin
Hamiltonian

 HTLS � �
�

2
~�x �

�
2

~�z; (2)

with a decoherence time longer than that of the qubit. The
Pauli matrices ~�x and ~�z operate on the TLS states. Note
that, since the nature of the TLSs is currently unknown, one
cannot derive the values of the TLS parameters from first
principles. As will become clear below, however, neither a
derivation of those parameters nor an understanding of
their physical origin is necessary in order to make use of
the TLSs.
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Although the available experimental data give rather
limited information about the TLS-TLS interaction, it is
highly unlikely that the TLSs interact directly with each
other or with the external fields, because of their suppos-
edly microscopic dipole moments and relatively large spa-
tial separation.

The TLS-CBJJ coupling is believed to be due to one of
the following mechanisms: (A) through the critical current
dependence on the TLS position [2] or (B) the direct dipole
coupling to the junction charge Q̂ (which is currently
considered more likely) [3,7]:

 Ĥ �A�int � �
Ic�0

2�
�Ic
2Ic

cos�~�z; Ĥ�B�int � �Q̂~�z: (3)

Both produce the coupling term hx�x ~�z. In addition, in the
former case there appears an hz�z ~�z term, which reflects
the change in the interlevel spacing !10 due to the plasma
frequency dependence on the bias. The ratio � 
 hz=hx �
�EC=2EJ�

1=4�1� j2��5=8, where EC � 2e2=C and EJ �
Ic�0=2�. If �EC=2EJ� � 10�7 (achievable using the ex-
ternal capacitor technique [3]) and j � 0:90, then � �
0:05 [8].

Hereafter, we consider the case where �� 1.
Otherwise, the effective TLS-CBJJ decoupling is impos-
sible even when out of resonance (on the positive side, this
effect would provide the means to definitively establish the
mechanism of TLS-CBJJ coupling). Then, performing a
basis transformation on the TLS states, relabeling ��2 �

�2
1=2 ! �, and using the rotating-wave approximation,
we finally obtain the effective Hamiltonian for the TLS-
CBJJ system:

 Ĥ � �
@!10

2
�z �

X
j

�
�j

2
~�jz � 	j�x ~�jx

�
; (4)

with the effective coupling coefficients 	j. The coupling
term acts only in resonance, when j@!10 ��jj< 	j.

The Hamiltonian (4) was derived under the experimen-
tally relevant assumption that the coupling 	� @!10 �

�. We neglected a term of the form ��x ~�jz in Eq. (4),
because its influence on the system’s dynamics is negli-
gible when �� @!10 and �2=@!10 � 	.

Qubit operations.—The interlevel spacing @!10 is tuned
by the bias current, which, together with the resonant
behavior of the TLS-CBJJ coupling, allows the indepen-
dent manipulation of each TLS (due to the natural disper-
sion of their characteristic energies �j). The condition
	� �, @!10 allows us to consider changes in the bias
current as adiabatic from the point of view of internal CBJJ
and TLS evolution but instantaneous with respect to the
CBJJ-TLS dynamics.

First, consider the single-qubit operations, assuming for
the time being that the decoherence times of the TLSs T�j�d
exceed the decoherence time of the CBJJ TCBJJ

d , which in
turn is much larger than the characteristic interaction time
@=	. On resonance with the jth TLS, the Hamiltonian (4)

contains a block that acts as �	j�x in the subspace of
degenerate states fj1i � jgi; j0i � jeig. Its operation leads
to quantum beats between the states of the TLS and the
CBJJ [see Fig. 1 (inset)], with the period 
j 
 @=	j, as was
observed in Ref. [2]. Therefore, single-qubit operations on
a TLS and its initialization to an arbitrary state can be
achieved as follows: After initializing the CBJJ in the state
j0i, we bring it in resonance with the TLS for the duration

j=2; as a result, the states of TLS and qubit are swapped:

 

j0i���jgi��jei�!ei��=2���ei��=2��1��=	�j0i��j1i��jgi:

(5)

Then the CBJJ is taken out of resonance with the TLS, a
rotation of its state is performed, and the resulting state is
again transferred to the TLS [always compensating for the
parasite phase shifts �2 �1� �=	�]. The readout of the qubit
state can be performed after the swap (5), e.g., by using the
technique of Ref. [6], where the transition to the resistive
state, with its potentially problematic coupling to the TLSs,
is avoided. The decoherence time T�j�d can be determined
using a similar sequence of operations, by initializing the
TLS in a superposition state, decoupling it from the CBJJ,
and measuring the probability to find the TLS in a given
state after a given time. Note also that if the Rabi frequency
of CBJJ greatly exceeds the TLS-CBJJ coupling, the ma-
nipulations with the state of the CBJJ can be performed
while in resonance with a TLS, reducing the overall op-
eration time [9].

FIG. 1 (color online). Fidelity of the ISWAP gate on two TLS
qubits in a CBJJ as a function of the relative difference between
the TLS energy splittings (�1 and �2, respectively). The solid
line corresponds to no decoherence; the dashed and dotted lines
correspond to CBJJ decoherence rates �1 � 	=20� and �1 �
	=2�, respectively, where in both cases �2 � 2�1. The much
slower decoherence of the TLSs have been neglected. 	 �
0:005�1. Inset: Schematic depiction of the quantum beats be-
tween the CBJJ and the TLS1 in resonance; TLS2 is effectively
decoupled from the CBJJ.

PRL 97, 077001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
18 AUGUST 2006

077001-2



Note that as soon as the CBJJ is biased away from the
resonance with the TLS, they effectively decouple, and any
perturbation of the quantum state of the CBJJ does not
affect the survival of quantum coherence in the TLS.
Therefore, the quality factor (the number of gates, of
average duration 
gate, that can be performed in the system
before it loses quantum coherence) is no less than
TCBJJ
d =
gate and can exceed this value depending on the

specific decoherence decay law.
The application of two-qubit gates between two TLSs

inside the same CBJJ can be achieved similarly. For ex-
ample, the universal ISWAP gate can be performed by the
following sequence of operations: Tune the CBJJ in reso-
nance with TLS1 for 
1=2, then tune it in resonance with
TLS2 for 
2=2, and finally again in resonance with TLS1

for 
1=2. (In the process, each TLS qubit was also rotated
by�=2 around the z axis, which can be trivially repaired by
performing the single-qubit rotation as described in the
previous paragraph.) At the end of the above sequence,
the CBJJ is decoupled and disentangled from both TLSs.

Numerical estimates.—The idealized picture of two-
qubit operations neglected (i) the finite detuning between
TLS qubits, (ii) the influence of other TLSs in the CBJJ,
(iii) decoherence, and (iv) the finite time of the CBJJ bias
current adjustment. We numerically investigated the im-
pact of these on the fidelity F:

 F � minimumj�ii
�h�ijU

y
ideal�fUidealj�ii�; (6)

where j�ii is an initial state, Uideal is the (ideal) desired
operation, and �f is the numerically obtained final density
matrix. [Note that the quantity inside the parentheses in
Eq. (6) depends on the initial state.]

In the numerical simulations, we took the ISWAP opera-
tion as a representative quantum gate and used 900 different
initial states. The results are as follows (see Fig. 1): For two
TLS qubits, with 	1 � 	2 � 0:005�1 (values close to the
experimental data [2,6]), the fidelity first reaches 90%,
when � 
 j�1 ��2j � 3:5	, and 99%, when � � 10	.
When � � 8	, the fidelity is 98.8%. Adding an idle TLS
with 	 � 0:002�1 in resonance with one of the qubit TLSs
reduces the fidelity to 80% (94% for 	 � 0:001�1).
Finally, with two qubit TLSs with reduced energies 1 and
1.04, four idle TLSs with reduced energies 0.99, 1.01, 1.03,
and 1.05, and the reduced coupling strengths 	qubit �

0:005 and 	idle � 0:002, respectively, we find that the
fidelity of the ISWAP gate � 95%. Therefore, we conclude
that the finite detuning and presence of idle TLSs per se is
not dangerous.

We now take into account the decoherence in the CBJJ,
neglecting the much weaker one in the TLSs. The ISWAP

fidelity with � � 8	j and without idle TLSs is 81% when
�1 � �1=2��2 � 	=20�, but it drops to 13% when �1 �
�1=2��2 � 	=2�.

Finally, we now consider the effects of a finite CBJJ bias
switching time between the resonant frequencies of the
TLSs. Taking a simple linear ramp with t � 2 ns and no

pulse optimization, and neglecting decoherence, we find
that the fidelity drops to 80%. Finite decoherence �1 �
�1=2��2 � 	=20� further suppresses it to 63%. The above
estimates show that the operation of the proposed two-
qubit gate can be realized with the current experimental
techniques used, e.g., in Ref. [3].

Scalability.—To ensure the scalability of the system, we
must be able to perform two-qubit gates on TLSs located in
different CBJJs. It can be done by swapping the states of
the capacitively coupled adjacent CBJJs like in Ref. [10],
but a better solution is based on the method suggested in
Ref. [11]. Here the qubit-carrying CBJJs are coupled ca-
pacitively to a common linear LC circuit with resonance
frequency !0 much higher than the characteristic frequen-
cies of separate CBJJs (Fig. 2).

The Lagrangian of the system is

 L �
C0

_�2
0

2
�
XN
j�1

�Cj _�2
j

2
�
C0j� _�j � _�0�

2

2

�
�
�2

0

2L0

�
XN
j�1

�
�Ij�j � Ej cos

2e�j

@

�



1

2

XN
j;k�0

Cjk _�j
_�k �U�f�g�; (7)

where _�j�t� 
 Vj�t�, the voltage between node j and the
ground. The corresponding Hamiltonian becomes

 H �
1

2

XN
j;k�0

C�1
jk p̂jp̂k �

1

2

XN
j�0

!2
j

C�1
jj

�̂2
j � � � � ;

where �̂ � �@=2e�’̂ [see Eq. (1)], ��̂j; p̂j
 � i@, C�1 is the
inverse capacitance matrix, !0 is the frequency of the LC
bus, !j is the frequency of the jth CBJJ in the harmonic
approximation, and the ellipsis stands for the nonlinear
corrections. After introducing the Bose operators a and
ay via �̂j � �j�aj � a

y
j �=2, p̂j � @�aj � a

y
j �=�i�j�,

�j � ��2@C
�1
jj �=!j�

1=2, the Hamiltonian becomes

FIG. 2. Scalability of the structure: Two-qubit operations be-
tween the TLSs on different CBJJs (j � 1; . . . ; N) are enabled by
the common LC circuit, which is capacitively coupled to the
CBJJs. The Josephson energy, capacitance, and bias current of
the jth CBJJ are Ej, Cj, and Ij, respectively.
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H �
XN
j�0

@!j

�
ayj aj �

1

2

�

�
XN

k>j�0

gjk�aj � a
y
j ��ak � a

y
k � � � � �

with the effective coupling

 gjk � @�!j!k�
1=2C�1

jk =�2�C
�1
jj C

�1
kk �

1=2
 :

By assumption, !0 � !j, j � 1; . . . ; N. Therefore, the
Hamiltonian can be projected on the ground state of the LC
bus [11]. The nonlinearity of the CBJJ allows us to further
restrict the Hamiltonian to the subspace spanned by the
states j0i and j1i of each CBJJ, producing

 Heff �
1

2

XN
j�1

@!j�
j
z �

XN
k>j�1

gjk�
j
y�ky: (8)

In the interaction representation with respect to H0 �
1
2

PN
j�1 @!j�

j
z, it is easy to see that �jy�t� � �jy�0�	

cos!jt� �
j
x�0� sin!jt [12]. Therefore, the pairwise cou-

plings in (8) will be effective only for the CBJJs tuned in
resonance with each other, in which case (!j � !k) the

effective interaction term is ~Hjk
eff � gjk��

j
x�kx � �

j
y�ky�=2.

On the subspace spanned by the states j0ij � j1ik and
j1ij � j0ik, the operator ��jx�kx � �

j
y�ky�=2 acts as �x

(while it is exactly zero outside). Therefore, this coupling
allows the same universal two-CBJJ manipulations as in
Ref. [10]. Universal two-qubit gates on TLSs situated in
different CBJJs can then be performed by transferring the
states of the TLS1;2 to the corresponding CBJJ1;2, perform-
ing the two-qubit operations on the states of CBJJ1;2, and
retransferring the resulting states back to the TLSs.

The number of TLS per CBJJ is of the order of 10 and
depends on the fabrication. The decoherence times of TLSs
are determined by their local environment and are insensi-
tive to the number of CBJJs linked to the same LC circuit.
Similarly, the influence of the LC circuit on the decoher-
ence of the CBJJ is negligible as long as !0 � !10 �!p

[4], the same requirement we need to obtain the coupling
~Hjk

eff . Therefore, the scalability of the system is limited by
the condition �L�C0 � NC

0
1;eff�


�1 � Ic=��0C1
, or, to the
same accuracy, N � ��0=LIc
�C1=C01
. Therefore, N can
be of the order of a few dozen without violating the
applicability conditions for the above scalable design.

The usefulness of TLSs for our purpose could be ques-
tioned because their parameters undergo spontaneous
changes. Nevertheless, since such changes typically hap-
pen on the scale of days [13], a prerun calibration is
sufficient for any realistic task. Another concern that could
be raised is the fact that any operation on the TLSs is done
through the CBJJ, so that the latter’s decoherence must be a
limiting factor on the number of operations that can be
performed on the TLSs, no matter how long their decoher-

ence times are. However, an important point to note here is
that, in the above design with N CBJJs, only one or two of
them are used during any gate operation. Therefore, the
decoherence time of the entire system is of the order of
TCBJJ
d rather than TCBJJ

d =N, which one would normally
obtain when using N CBJJs as phase qubits.

Note that there is some control, albeit very limited, over
the properties of the TLSs and their number [3]. They will
not be the only naturally formed objects to allow quantum
manipulation (see, e.g., [14]).

Summary.—In conclusion, we have demonstrated that
quantum TLSs naturally occurring in CBJJs can be used as
qubits. The one- and two-qubit gates, initialization, and
readout can be readily performed, and the system can be
scaled beyond a single CBJJ. Being microscopis objects,
TLSs have a higher probability of possessing long deco-
herence times, which are only weakly affected by the TLS-
CBJJ interactions, due to that interaction being switched
off for most of the time. The tunability of the CBJJs
compensates for our currently limited control over the
parameters of the TLSs. In any case, both our numerical
simulations and especially the observation of quantum
beats between TLS and CBJJ [2] show that the experimen-
tal realization of our scheme is within the reach of current
experiments [3].
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