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The concept of fractional charge is central to the theory of the fractional quantum Hall effect. Here I use
exact diagonalization as well as configuration space renormalization to study finite clusters which are
large enough to contain two independent edges. I analyze the conditions of resonant tunneling between the
two edges. The ‘‘computer experiment’’ reveals a periodic sequence of resonant tunneling events con-
sistent with the experimentally observed fractional quantization of electric charge in units of e=3 and e=5.
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Perhaps the most intriguing feature of the fractional
quantum Hall effect (FQHE) [1] is the existence of quasi-
particles whose electric charge is a simple fraction of the
elementary charge e [2]. Quasiparticles of charge e� � e=3
and e=5 have been first observed experimentally in the � �
1
3 and � � 2

5 fractional states, respectively, using resonant
tunneling via a quantum antidot (a potential hill) [3–5].

Since the bulk fractional state is an insulator, the most
interesting transport properties of the system are associated
with the edges, particularly with tunneling into or between
the edges [3–8]. Because of cluster size limitations, com-
putational studies of edge physics have focused on the
properties of a single edge, such as nonuniversality of the
tunneling exponent [9,10] or reconstruction of the charge
density [11–14]. The properties of the Laughlin wave
function describing a dual-edge system have been studied
in cylindrical [15] and disk geometries [16]. Study of edge
to edge tunneling through a bulk fractional state requires
clusters large enough to contain two independent edges.

Exact diagonalization (ED) of finite clusters has been
very fruitful in helping to understand the physics of FQHE
[2,9–16]. Ordinary electronic structure methods fail for
this system because the kinetic energy is quantized by
the magnetic field. ED, or ‘‘full CI’’ in quantum chemical
terminology, imposes severe restrictions on the cluster size,
since the dimensionality of the Hilbert space grows expo-
nentially with the number of particles N:
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Here L � N=f, f < 1, is the filling factor. The quantity in
brackets reaches a maximum value of 2 at f � 1

2 .
In the past, we have perfected the Lanczos technique

[17,18], both Hermitian [19,20] and not [21–23], to work
with matrices up to �109 � 109. Equation (1) translates
this into about N � 12 particles at f � 1

3 or N � 16 at f �
1
2 . Whereas exact solutions for up toN � 22 are sometimes
possible [20],N * 12 normally require approximate meth-

ods. Here I use ED and also an approximate method to
model the resonant tunneling experiments [3–5].

In Refs. [3–5], a periodic sequence of resonant tunnel-
ing events was observed as either the magnetic field H or
the backgate voltage VBG was varied. The tunneling events
are thought of in terms of a quasiparticle tunneling through
the bulk of the fractional state between the outer edge of
the sample and the inner edge formed around the antidot.
The periodicities �H and �VBG were related [3] to the
quasiparticle charge e�.

In order to mimic the experimental setup, I consider a
planar FQHE sample with two unconnected edges (inset in
Fig. 1). N electrons in the lowest Landau level are confined
by the potential of a uniformly charged disk with a hole in
the center, positioned in the plane of the two-dimensional
(2D) electron gas. The positive charge density � and the
inner radius R1 of the disk are free parameters. The outer
radius R2 is always chosen such that the whole system is
neutral. The electronic density ��r� confines itself between
R1 and R2, falling off sharply beyond this range. Setting �
to a fraction � � 1

3 , 2
5 , etc., of the density �1 of the

completely filled Landau level controls the fractional state,
with ��r� approaching ��1 (for N ! 1) far from both
edges. Near the edges, ��r� is known to exhibit oscillatory
behavior thought to decay slowly into the bulk [13]. Such
behavior prevents formation of a well-defined density pla-
teau between the edges in the finite clusters studied here
numerically.

An increase in R1 strengthens the antidot and expels a
charge from inside of the antidot towards the outer edge.
The charge expelled does not accumulate in the bulk
because of neutrality considerations and because of incom-
pressibility of the bulk fractional state. I prefer to use the
‘‘missing charge’’ Q � ��R2

1=e as a variable, instead of
R1. When Q is continuously increased, the ground state of
the system reconstructs via a steplike process. The recon-
struction events correspond to ground-state degeneracies,
when it costs no energy to transfer charge from the inner to
the outer edge. This is precisely the condition for resonant
tunneling through the antidot.
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In the disk geometry, the single-particle states  m in the
lowest Landau level are characterized by the angular mo-
mentum m � 0; 1; . . . , and the total angular momentum
M �

P
m is conserved. The Coulomb matrix elements are

known [24,25]. The matrix elements of the confining po-
tential are Vm � Vm�R2� � Vm�R1�, where

 Vm�R� �
ZZ

�<R
d2�d2r

e�
jr� �j

j m�r�j2
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Here ‘H �
���������������
@c=eH

p
is the magnetic length, Z � R2=4‘2

H,
q�00 � 1, q�0m � �2m� 1�q0;m�1, and q�im � �2m� 2i�
1�q�i;m�1 
 2q�i�1;m�1 � 2qi�1;m�1.

For a given set of N, Q, and �, I find the lowest energy
EM�Q� at each M. The ground-state energy is then E�Q� �
minEM�Q�. The ground-state reconstruction events occur
via level crossings of branches with differentM and lead to
a stepwise function M�Q�. The number p of the steps that
occur per �Q � 1 may be related to the charge e=p that is
moved from the inner to the outer edge per one reconstruc-
tion event.

Figure 1 shows EM�Q� for N � 12, Q � 2. The se-
quence of sharp cusps on the right curve are the 1

3 fractional
states. The state atM � 270 is the true ground state atQ �
2 and � � 1

3�1, whereas the states with M � 270� 12,
M � 270� 24, etc., are candidates for the ground state at
different Q. The quasiperiodicity with �M � 12 is due to
the approximate invariance of the antidot Hamiltonian with
respect to the Laughlin’s quasihole creation operator [2]
A0, also known to be the generator of infinitesimal mag-
netic translations [26]. Applied to an arbitrary many-
electron wave function �, it translates it in the angular
momentum space, m! m
 1. The total angular momen-
tum then transforms as M ! M
 N:

 �M
N �A0�M: (3)

At Q � 0, the ground state occurs, approximately, at the
Laughlin’s angular momentum [27]

 M��Q � 0� �
N�N � 1�

2�
: (4)

I generalize this for a disk with the missing charge Q as

 M� �
�N 
Q��N 
Q� 1�

2�
�
Q�Q� 1�

2�
: (5)

ForN � 12,Q � 2, I getM�1=3 � 270 andM�2=5 � 225 (cf.
Fig. 1).

The single-particle orbitals  m�r� are localized near r �
‘H

�������
2m
p

, where ‘H is the magnetic length. Therefore, in a
macroscopic system whose density approaches a constant
��1 in the bulk, the operator A0 pushes the density out of
the center, creating an effective positive charge e� � �e.
This is an exact formal property of A0 but relates to the
physical system via the approximate invariance (3).
Indeed, Eq. (5) can be obtained from (4) by applying
A�Q=��

0 :

 M� � M��Q � 0� 
 NQ=�: (6)

Figure 1, therefore, suggests that the ground state of the 1
3

system changes in steps of �M � N, transferring charge
e� � e=3 from the inner to the outer edge at every step.
According to (6), the steps should occur at �Q � � � 1

3 .
Remarkably, the range of M that corresponds to the 2

5
fractional state exhibits double periodicity, �M � 6 �
N=2. This should cause branch crossings twice as often,
�Q � �=2 � 1=5. Consequently, the charge transferred
per one reconstruction event is e� � �e=2 � e=5, in agree-
ment with the experiment [4]. The double periodicity in
EM�Q� at � � 2

5�1 shows up also for N � 11, 10, 9, and 8,
though it is less pronounced for smaller N.

Figure 1(b) exposes the tiny structure in EM�Q� by
subtracting its greatest convex minorant �EM [dotted purple
line in Fig. 1(a)]. I notice that this structure, which is the
manifestation of the FQHE, is insensitive to the confining
potential and is practically the same for � � 1

3�1 and 2
5�1,

suggesting rigidity of the wave function with respect to the
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FIG. 1 (color online). Exact ground-state energy of N � 12
electrons in 2D confined by Coulomb attraction to a uniformly
charged annulus (inset) of charge density � � 1

3 and 2
5 of the

filled Landau level. The units are e2=‘H. The upper panel also
shows CSR results for K � 104 and 105. Full Hilbert space
dimensionality is 108–109 and varies with M [34]. The 2=5
data are shifted upward by 1.5. The lower panel exposes the
FQHE-related structure in EM by subtracting the greatest convex
minorant �EM [the dotted purple line].
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confining potential [��M=�V�r� being small by some
measure], whereas the principal effect of V�r� is to select
which M is the ground state. Figure 1(b) also suggests that
traces of �M � 4 periodicity may be present in the area
near M�3=7 � 210. By the same logic, �M � N=3 at 3

7

filling corresponds to e� � e=7, although larger clusters
are needed to separate the 2

5 and 3
7 states. Indeed, from

Eq. (4), the condition M�2=5 �M
�
3=7 � N leads, at Q � 0,

to N � 13.
I further use the configuration space renormalization

(CSR) approach to study larger clusters up to N � 15
and to compute EM�Q� for several values of Q and obtain
the branch crossings directly. The CSR reduces the dimen-
sionality of the many-body Hilbert space by selecting its
most relevant subspace. It is similar in spirit to the basis set
reduction (‘‘BSR’’) technique by Wenzel and Wilson [28]
and a number of related algorithms [29–32]. The CSR
iteratively improves a basis set of K many-body configu-
rations using their weight in the solution as the criterion of
relevance.

The CSR algorithm works as follows. I start with an
arbitrary set of K many-body configurations and diagonal-
ize the Hamiltonian in the subspace they span. The result is
a state vector expanded in many-body configurations. I
then retain K0 <K configurations by discarding the ones
which have little weight. I reexpand the set with the new
configurations that have large matrix elements with those
retained. When repeated, the procedure converges after
10–15 iterations (Fig. 2) and yields some optimal set of
configurations.

The resulting basis truncation is essentially many-body
and cannot be achieved by truncating or rotating the single-
particle basis. ED performed in the subspace yields a
variationally stable ground-state energy that converges to
the exact value as K is increased. In practice, I do not keep
K constant but increase it from iteration to iteration (Fig. 2,
inset), monitor the convergence, and extrapolate as 1=K !
0 [33].

Figure 1 compares CSR results for K � 104 and 105

against the exact solution. We see that the essential FQHE
structure survives the basis truncations of several orders of
magnitude and that a reasonable accuracy is achieved for
K � 105 in the whole range of M. Qualitative results are
obtained already with K as small as 104.

I used CSR to compute EM�Q� for Q in steps of 0.25,
interpolated between these points with a cubic spline, and
found minEM�Q� over M at every Q (Fig. 3). I used K �
200 000 for N � 13, K � 500 000 for N � 14, and K �
1 000 000 for N � 15. K was doubled in some calculations
where the extrapolation to 1=K ! 0 seemed ambiguous.

Figure 3 shows stepsM�Q� for N from 11 through 15, as
the missing charge Q is continuously increased. The left
panel shows that three steps typically occur per �Q � 1
for all N. The general slope is consistent with Eq. (6), and
most of the steps in the left panel have �M � N precisely.
The data for the 2=5 fraction (the middle panel) show steps

occurring about twice as often. These observations are in
line with our expectations based on the quasiperiodicities
seen in Fig. 1. Careful examination of the 2

5 data shows that
the change M ! M
 N occurs usually in two steps,
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FIG. 2 (color online). Typical CSR energy convergence, N �
12, � � 2

5�1, M � 216, K � 105. The inset shows convergence
with K when K is increased by a factor of 1.2 at every iteration.
‘‘
’’ (red) and ‘‘�’’ (green) data sets indicate insignificance of
the starting value of K except for the initial iterations. The stars
(blue) give the overlap with the exact eigenvector. The squares
(purple) show the magnitude of projection of the exact eigen-
vector onto the CSR subspace (that is, maximum overlap with
any vector in the subspace) and as such characterize the quality
of the subspace [36].
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FIG. 3 (color online). Angular momentum M�Q� of the
ground-state changes in steps as the missing charge Q is tuned
continuously. The steps occur at the ground-state degeneracies,
when it costs no energy to move a quasiparticle from the inner to
the outer edge, and can be associated with the resonant tunneling
between the edges through the bulk of the FQH state.
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although these steps are not always equal to N=2. The data
for 3

7 have been computed only for N � 13 as discussed
above. They show behavior similar to the 2

5 data. An
expectation of 7 steps per �Q � 1 (or �M � N=3 as we
would expect for e� � e=7) cannot be confirmed. This
could mean that theN � 15 cluster size is not large enough
to distinguish the 3

7 fraction. It could also indicate a genuine
property of the 3

7 fraction that needs to be understood.
In conclusion, I have conducted a ‘‘computer experi-

ment’’ designed to model the key elements of the real
experiment on resonant tunneling through a quantum anti-
dot [3]. The data on small clusters obtained using ED and
CSR reveal a sequence of the ground-state reconstruction
events consistent with the periodicity of the resonant tun-
neling peaks observed experimentally.

The CSR approach employed here offers a number of
advantages in modeling many-body clusters. In particular,
truncation of the single-particle basis, whenever possible
(such as restricting the range of m [34]) occurs automati-
cally within CSR, which discards irrelevant many-particle
configurations and thus effectively removes any single-
particle state that contributes to none of the relevant con-
figurations. This feature itself can be a major simplifica-
tion, because the relevance of a single-particle orbital
cannot always be judged in advance.

The term ‘‘renormalization’’ I use reflects the spirit of
the renormalization theory, yet I have not observed any
defined fixed point: The set of K relevant configurations
keeps changing slightly upon convergence, with some
marginally relevant configurations being replaced with
other similarly relevant ones.

In general, performance of CSR may benefit if it is
augmented with rotations of the single-particle basis
[35], though the choice of the basis is fixed by symmetry
in the case of the lowest Landau level in disk geometry.

I thank V. J. Goldman for numerous enlightening con-
versations. I also acknowledge stimulating discussions
with A. L. Aleiner.
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