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Invisibility devices exploit ambiguities in the inverse scattering problem of light in media. Scattering
also serves as an important general tool to infer information about the structure of matter. We elucidate the
nature of scattering ambiguities that arise in central potentials. We show that scattering is a tomographic
projection: The integrated scattering angle is a projection of a scattering function onto the impact
parameter. This function depends on the potential but may be multivalued, allowing for ambiguities
where several potentials share the same scattering data. In addition, multivalued scattering angles also lead
to ambiguities. We apply our theory to show that it is, in principle, possible to construct an invisibility
device without infinite phase velocity of light.
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An invisibility device [1–7] should guide light around an
object as if nothing were there. It is conceivable that such
devices can be made using modern metamaterials [2–5,7].
Passive optical devices use spatially varying refractive-
index profiles for imaging. Within the validity range of
geometrical optics, index profiles of isotropic dielectric
media are mathematically equivalent to potentials for light
rays [4,8]. Therefore, such an invisibility device corre-
sponds to a potential that has the same scattering character-
istic as empty space. While the inverse scattering problem
for waves has unique solutions [9], the scattering of rays
may be ambiguous; i.e., different potentials may lead to
identical scattering data. Here we show how such ambigu-
ities arise in the case of radially symmetric potentials. Our
theory indicates that it is, in principle, possible to construct
an invisibility device where the phase velocity of light does
not approach infinity, in contrast to all previous proposals
for macroscopic cloaking [2–5]. This could inspire ideas
for developing invisibility devices without anomalous dis-
persion [2] that could operate in a relatively wide fre-
quency window. In addition to applications in a poten-
tially new area for metamaterials, our theory has wider
implications for the field of scattering tomography.

The inversion of the classical scattering in central po-
tentials is a classic textbook problem that has made it into
the exercises in Landau and Lifshitz’s Mechanics [10].
Since Rutherford’s experiments, scattering has served as
an important tool to investigate the structure of matter, with
modern applications ranging from biomedical research to
astrophysics. Techniques to infer the structure of matter
from scattering are often called scattering tomography,
although, strictly speaking, they are not directly related
to traditional tomography [12] where the shape of a hidden
object is reconstructed from projections. Here we show that
the case of scattering in central potentials literally is a
tomographic projection in disguise but with an interesting
twist: The object to be reconstructed corresponds to the

potential but may be represented by a multivalued func-
tion, allowing for ambiguities.

Figure 1 illustrates the situation typical for scattering in
central potentials. An incident ray characterized by the
impact parameter b and the energy E is deflected by the
angle �. We use polar coordinates with radius r and angle
’ in the plane orthogonal to the angular-momentum vector.
The scattering angle is determined as [11]

 � � �� 2
Z 1
r0

�b=r�dr�����������������
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Here r0 denotes the radial turning point of the trajectory
given by b and E, and � represents the potential as
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FIG. 1. Scattering in a central potential. A trajectory incident
with impact parameter b is deflected by the angle � in the
rotationally symmetric potential U�r� centered at the origin,
with r �

����������������
x2 � y2

p
in the Cartesian coordinates x and y. The

turning point of the trajectory is denoted by r0. The figure shows
Rutherford scattering [11] in a repulsive 1=r potential.
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value of r at which the denominator in the integrand (1) of
the scattering angle vanishes, i.e., at which � � b.
Reversing this relation leads to a physical interpretation
for �: ��r� describes the impact parameter for which the
radius r is a turning point. Therefore, we may call � the
turning parameter. Figure 2 illustrates the representation of
the potential using the turning parameter. The largest zero
of ��r� corresponds to the potential barrier where U � E.
The potential is repulsive for � < r, zero for � � r, and
attractive for � > r. Note that the inverse function r���
may be multivalued, as shown in Fig. 2(a). The additional
values of r��� describe the turning points of additional
bound trajectories for the same energy E and the angular
momentum that corresponds to the impact parameter b.
Scattering does not probe such bound states, although the
trajectories of scattered rays may enter the same region for
different impact parameters b. As we show, the possibility
of such elusive bound trajectories indicates ambiguities in
scattering.

In the following, we express the description of scattering
in central potentials as a tomographic projection for the
integrated scattering angle

 � �
Z b

1
�db: (3)

First, we represent Eq. (1) as
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in terms of

 W � ln��=r�; a �
�����������������
�2 � b2

q
: (5)

A prime indicates differentiation with respect to the turn-
ing parameter. We call W the scattering function. When
r��� is multivalued, the integration contour is understood
to follow accordingly. Since
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we obtain for the integrated scattering angle

 � � �2
Z 1
b
W0ad� � 2

Z 1
b
Wa0d� �

Z �1
�1

Wda: (7)

This result has the simple geometrical meaning illustrated
in Fig. 3: Imagine that a and b constitute a plane of impact
parameters where one, b, is experimentally accessible and
the other, a, is not. The scattering functionW depends only
on the radius � �

�����������������
a2 � b2
p

, both directly by definition (5)
and in r���. Equation (7) shows that the integrated scatter-
ing angle is a projection of the rotationally symmetric
object W��� onto the experimentally accessible impact
parameter b in exactly the same way as objects are pro-
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FIG. 2. Representation of the potential by the turning parame-
ter � defined in Eq. (2). The solid line in (a) shows a fold in the
turning parameter where r��� is multivalued. (b) shows the
corresponding potential U�r�. The dotted lines describe ��r�
and U�r� for a potential with the same scattering characteristics.
Here r��� was obtained from Eq. (10) using the definition (5) of
the scattering function W.
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FIG. 3 (color online). Scattering tomography. The integrated
scattering angle � is a projection of the scattering function W
onto the impact parameter b along the lines of the fictitious
parameter a. The radius � in this auxiliary �a; b� plane is the
turning parameter (2). The scattering function, defined in Eq. (5)
and obtained from Fig. 2, may be multivalued, as shown here.
The folds of W visualize the ambiguities of scattering.
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jected in classical tomography [12] or Wigner functions in
quantum tomography [13,14]. If r��� is single-valued, one
can invert the projection by the inverse Abel transforma-
tion [13–15]

 W � �
1

�

Z 1
�

�db�����������������
b2 � �2

p ; (8)

a special case of the inverse Radon transformation [12,13].
If r��� is multivalued, one can hide features of the potential
in the folds of W, as Fig. 3 illustrates.

Consider the scattering ambiguities where the scattering
function W is multivalued. The simplest case corresponds
to a single fold in W between two turning parameters �1

and �2, as shown in Figs. 3 and 4. We use the inverse Abel
transformation (8) to construct a potential, described by
W0���, that exhibits the same scattering characteristics as
W. Figure 3 indicates that W and W0 agree for � > �1,
because all projections lie under the fold. For � < �1, the
scattering angle � is, according to Eq. (1),

 � � 2b
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p d�; (9)

where the integration variable � refers to the turning
parameter, W follows the solid curve in Fig. 4, with a
jump at �1, whereasW� denote the top andW� the bottom
curve of the fold. Since the inverse Abel transformation (8)
uniquely inverts the first term in �, we obtain for the
difference between W and W0
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by partial integration, utilizing that the boundary term
vanishes, because W���2� � W���2�. Since W� >W�,
the ambiguous W must exceed W0 in the single-valued
region inside �1, which implies that the radius r �
� exp��W0� is greater than � exp��W�. The fold of multi-
valuedness thus magnifies the scattering structure of the
potential. In particular, for ambiguous scattering poten-
tials, the zero of ��r� is closer to the origin than for the
equivalent nonambiguous one. Since this zero corresponds
to the potential barrier beyond which one can hide, nothing
is gained, quite the opposite. This feature continues in the
general case of several folds in W, because one could
replace W by equivalent single-valued W0 with the same
scattering characteristics, starting from the outmost fold
and proceeding to the inside.

An alternative way of hiding the presence of a potential
would be to let the trajectories leave at scattering angles
that are multiples of 2�, i.e., to turn them around in
precisely adjusted loops. Suppose that for impact parame-
ters b smaller than a critical b0 the trajectories are uni-
formly turned by � � �2�� and are not affected for b
larger than b0. Here � may be a real number, not only an
integer, for the sake of generality. Assuming that r��� is
single-valued, we obtain from the inverse Abel transfor-
mation (8)

 r �
�
��b0=��

����������������������
b2

0=�
2 � 1

q
��2� � < b0

� � � b0:
(11)

Figure 5 illustrates the curves of ��r�. Clearly, r��� is
single-valued by definition. For � < 0, the potential would
be repulsive, because the trajectories are deflected, but in
this case the function ��r� itself is multivalued.
Consequently, no central potential exists that uniformly
deflects trajectories. For � > 0, the potential is attractive,
as one would expect to be necessary for bending trajecto-
ries around the center of force. The case � � 1=2 corre-
sponds to a Kepler potential [11] or the Eaton lens [15–17]
developed in radar technology. In the limit �! 0, we get
from Eq. (11) the asymptotics �=r� �2=r�2�=�2��1�, and,
hence, according to Eq. (2) the potential U diverges with
the power �4�=�2�� 1� for small r. One cannot hide
anything here. In the limit �! 1 of infinitely many
cycles, U approaches near the origin the 1=r2 potential of
fatal attraction [11]. Figure 5(b) illustrates the case where
the trajectories are turned around by 2�.

Although one cannot directly apply the ambiguous scat-
tering of isotropic and centrally symmetric media to con-
struct an invisibility device, one can use their singularities
to improve anisotropic devices. Such a device is designed
to facilitate a coordinate transformation with a hole where
anything inside is hidden by construction [2]. Consider a
two-dimensional case in polar coordinates. Suppose that
the radius r is mapped onto r0 such that r0 reaches the
radius of the hole at r � 0 as
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FIG. 4. Multivalued scattering function W obtained from
Fig. 2 according to the definition (5). The W��� function is
folded between the turning parameters �1 and �2 where W�
denotes the top and W� the bottom curve of the fold.
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@r0

@r
� �r�s for r� 0; (12)

where � and s are non-negative constants. Beyond the
outer radius b0 of the cloak, the coordinates r0 shall co-
incide with r. Assume in unprimed space the isotropic and
radially symmetric refractive-index profile n�r� with per-
fect impedance matching. References [2,5] give recipes to
calculate the dielectric " and magnetic� that facilitates the
coordinate transformation (12). We find

 "0r � �0r �
�r1�s

r0
n�r�; "0’ � �0’ � r0

rs�1

�
n�r�:

(13)

Suppose that we use a profile where n2=2 corresponds [4]
to the E�U of uniform bending (11) with the definition
(2) and � � 1. If we choose s � 1=3, the singularity of U
compensates for the zero in the refractive index in real
space that would otherwise imply [2] that the speed of light
tends to infinity at the inner lining of the cloak. The phase
velocity in radial direction is finite. On the other hand, the

speed of light in the angular direction tends to zero with the
power 4=3. Our simple example indicates that invisibility
devices with finite phase velocity are possible, in principle.
In our case, wrapping light around the invisibility device
stratifies the optical wavefronts. However, there is a price
to pay: Light propagation with finite phase velocity around
an object inevitably causes time delays that result in wave-
front dislocations at the boundary [4]. The invisibility is
perfect for rays but not for waves.

Conclusions.—We visualized the scattering of particles
in central potentials. Scattering appears as a tomographic
projection with an interesting twist: multivalued images
that encode the potential. Multiple branches describe scat-
tering ambiguities where different potentials lead to iden-
tical scattering data. Such ambiguities are limited, though:
Central potentials are never completely invisible, but they
can be employed to improve invisibility devices. Our the-
ory proves that invisibility requires asymmetric refractive-
index profiles [3,4] or anisotropic media [2,5]. Otherwise,
trying to hide things uniformly from all sides just magnifies
them.
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FIG. 5. Uniform bending. (a) shows the turning parameters
obtained from Eq. (11) for the winding numbers � 2
f2; 1; 0:5;�0:1;�0:2;�0:3g and b0 � 1. For negative �, ��r�
is multivalued and, hence, unphysical. (b) illustrates the uniform
loops of trajectories for � � 1.
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