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An experimentally viable approach for preparing arbitrary photon number states of a cavity mode using
continuous measurement and real-time quantum feedback is presented. The procedure passively monitors
the number state actually achieved in each feedback-stabilized measurement trajectory, thus providing
nondestructively verifiable photon generation. The feasibility of a possible cavity QED implementation in
the many-atom, good-cavity-coupling regime is analyzed.
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Practical schemes for preparing number states of the
electromagnetic field are sought for the enabling role these
states play in quantum information science. For example,
single photons provide a valuable resource that can be used
in quantum cryptography, communication, and quantum
computation with linear optics [1,2]. Multiphoton number
states are desired for their role in realizing subshot noise
quantum metrological procedures and as a reagent for
synthesizing complex nonclassical fields, including optical
Schödinger cat states [3].

With these information-theoretic applications in mind,
one can compile a list of features desired for ideal number
state preparation: (1) determinism, meaning that the target
photon number is produced with high probability in every
state-preparation shot, (2) verifiability, meaning that the
number of photons actually generated can be diagnosed
nondestructively in every shot, and (3) extendability, mean-
ing that a single device can easily vary the photon number
from shot to shot. Different applications benefit from these
disparate features in different ways. For instance, verifi-
ability is likely the highest priority for cryptographic se-
curity. High determinism, on the other hand, offers
improved efficiency for quantum communication and com-
putation. Ideally, a single physical device could meet all
three objectives simultaneously.

To date, quality single photons have been produced in
trapped-atom cavity QED experiments [4], quantum dots
[5,6], ballistic-atom cavity QED [7], and collective excita-
tions of an atomic ensemble [8,9]. A theoretical approach
for extending cavity QED schemes to higher photon num-
bers by capitalizing on collective dark states found in the
symmetric group of multiple atoms has been suggested [3]
and two-photon states of a micromaser have been dynami-
cally generated [10]. But while highly deterministic,
trapped-atom cavity QED experiments demand the strong
cavity-coupling regime and require exactly N intracavity
atomic excitations to achieve an N-photon number state
[3]. Varying the photon (atom) number in back-to-back
shots in this regime is likely to be difficult. It is not yet
understood whether quantum dot, ballistic-atom cavity
QED, or atomic ensemble schemes can be reasonably

extended to higher photon numbers. None of these proce-
dures offer inherent single-shot verifiability.

Here, we introduce a procedure for preparing cavity
number states that is simultaneously deterministic, intrinsi-
cally verifiable, and naturally capable of producing arbi-
trary photon numbers. The procedure is based on a
continuous photon number measurement [11] embedded
within a real-time quantum feedback control loop [12,13].
Basic quantum mechanics specifies that conditioning the
state of the cavity field on the outcome of a photon number
measurement reduces the field to a measurement eigenstate
(or at least an approximate eigenstate in practice) [14].
Quantum feedback renders this state reduction process
deterministic by actively stabilizing the measurement out-
come to the target photon number eigenstate with arbi-
trarily high probability [15]. With a properly designed
feedback policy, any possible measurement outcome
(number eigenstate) is a viable candidate for stabilization
in every distinct measurement trajectory. And, since the
state preparation is performed by a nondestructive quan-
tum measurement, passive single-shot verifiability is an
unavoidable fringe benefit of the procedure’s own internal
anatomy.

Figure 1 provides a schematic of the feedback-stabilized
measurement analyzed below. Continuous observation of
the photon number, n, in a single cavity mode, â, is
implemented by coupling that cavity mode to an auxiliary
probe field, b̂, via a cross-Kerr nonlinear scattering
Hamiltonian, Ĥint � @�âyâb̂yb̂ (� is the strength of the
nonlinearity). For a coherent state probe, the mode-
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FIG. 1 (color online). Schematic of a feedback-stabilized con-
tinuous measurement of cavity photon number.
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coupling interaction induces a phase shift that is propor-
tional to the cavity photon number, n [16]. Thus, observing
the probe’s phase provides an indirect measurement of the
cavity number, n.

Such a measurement can be implemented, as in Fig. 1,
by placing the Kerr nonlinearity in one arm of a Mach-
Zender interferometer and performing balanced homodyne
detection on the forward-scattered probe field. The output
of the homodyne detectors in this configuration is given by
the continuous photocurrent [12,17],

 dyt � 2�
�����
M
p

ndt�
����
�
p

dWt; (1)

where � is the quantum efficiency of the photodetectors,M
is a rate referred to as the measurement strength (described
in detail below), and the dWt are Gaussian stochastic
increments that reflect quantum noise in the continuous
measurement.

Prior to conducting any feedback, these quantum fluc-
tuations must be filtered from the photocurrent to obtain an
optimal time-dependent estimate of the cavity photon
number [13,17]. The problem of extracting such an esti-
mate is the subject of quantum filtering theory [15,18], a
field that combines elements from classical signal process-
ing and stochastic analysis with the theory of continuously
observed open quantum systems. Here, quantum filtering is
conducted by propagating the time-dependent cavity state,
�̂t, according to a master equation,

 d�̂t � �i�Ĥ
�fb�
t ; �̂t�dt�MD�n̂��̂tdt� �D�â��̂tdt

�
�����
M
p

H �n̂��̂t�dyt � 2�
�����
M
p

Tr �n̂�̂t�dt�; (2)

that conditions it on the information provided by the accu-
mulating measurement data, dyt. The superoperators in
Eq. (2) are given, as usual, by D�r̂��̂t � r̂�̂tr̂

y � 1
2 	

�r̂yr̂�̂t � �̂tr̂
yr̂� and H �r̂��̂t � r̂�̂t � �̂tr̂

y � Tr ��r̂�
r̂y��̂t��̂t. The first term in the master equation describes

any Hamiltonian driving (such as feedback) performed on
the system, the second term describes decoherence caused
by coupling the cavity mode to the probe, the third term
reflects cavity decay through the mirrors, and the final term
conditions the state on the measurement via the innovation
process, dyt � 2�

�����
M
p
hn̂itdt.

The optimal photon number estimate at time t is ob-
tained from the continuously conditioned cavity state as
hn̂it � Tr �n̂�̂t�. Equation (2) thus implicitly provides the
crucial feedback ingredient known as the error signal,

 et � n? � hn̂it; (3)

computed as the deviation of the estimated photon number
from the target, n?. Feedback can then be performed by
driving the cavity in response to the error signal. The
following analysis considers a feedback control policy,

 Ĥ �fb�t � 1
2Get�â� â

y�; (4)

that drives the cavity amplitude quadrature, X̂ � 1
2 	

�â� ây�, in proportion to the continuous error signal, et,
with dc loop gain, G. This feedback policy has the satisfy-
ing intuitive interpretation that the controller will increase
the amplitude of the intracavity field when its current
estimate of the cavity photon number, hn̂it, is below that
of the target, n?, and vice versa. Equation (4) also high-
lights the stochastic nature of quantum feedback, which
unlike classical servos typically encountered in the physics
laboratory, demands a quantum filter instead of, say, an
integrator to achieve feedback stability.

As in any cavity QED situation, true number states are
only achieved in the idealized limit where �! 0. This
limit provides an illustrative demonstration of the salient
features of feedback-stabilized number state preparation
(realistic parameters considered below). Figure 2 depicts a
simulated ideal measurement where the objective is to
prepare an n? � 2 number state beginning from vacuum.
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FIG. 2 (color online). An idealized photon number measurement (�! 0, � � 1, other parameters from Table I) where filtering the
continuous photocurrent (a) provides an optimal real-time estimate (b) of the cavity photon number used to drive the measurement to a
deterministic outcome via feedback. The evolving cavity mode Q function (c) illustrates the process.
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The homodyne photocurrent, yt in Fig. 2(a), is clearly
swamped with quantum noise. However, by propagating
the quantum filtering equation [19] subject to yt as more
data become available, the controller extracts its optimal
real-time estimate of the cavity photon number [Fig. 2(b)].
Uncertainty in the estimate [shaded region in Fig. 2(b)] is
gradually reduced by the measurement.

Figures 2(c)1, 2(c)2, 2(c)3, 2(c)4, and 2(c)5 highlight the
feedback-mediated progression to the target eigenstate by
depicting the cavity Q function as it changes in time
(Qt��� �

1
� h�j�̂tj�i is a quasiprobability distribution pa-

rametrized by the coherent state amplitude, � � x� iy 2
C). Beginning from the vacuum Q function, Q0��� �

1
� 	

exp�� 1
4 j�j

2� in Fig. 2(c)1, the quantum filter rapidly finds
that the photon number is small relative to the target n
 �
2. Feedback consequently displaces the cavity mode to-
ward hn̂i � 2 by driving the in phase to increase the intra-
cavity field, seen in Fig. 2(c)2 at time Mt� 0:1.
Conversely, when nt > n
, the cavity is driven out of phase
to decrease its field. As the measurement proceeds, the
photon number uncertainty, h�n̂i, begins to decrease at the
expense of phase uncertainty [Fig. 2(c)3], eventually pro-
ducing a heavily number-squeezed state [Fig. 2(c)4 at
Mt� 5]. The target n
 � 2 eigenstate—with its telltale
phase-delocalized Q function—is ultimately achieved
[Fig. 2(c)5 at Mt � 10].

Of course, a viable laboratory implementation of the
cross-Kerr nonlinear optical Hamiltonian [16] is needed
for feedback to be practical. A suitable interaction is
provided by an atomic dark-state mechanism analogous
to that proposed for giant free space Kerr nonlinearities
[20]. We consider a sample of N intracavity atoms with the
hyperfine level structure depicted in Fig. 3 where two
nonradiative hyperfine stretched states are coherently
coupled via a two-photon transition that involves both the
cavity mode and a strong drive laser. A photocurrent of the
form in Eq. (1) is obtained by dispersively coupling the
probe field to the atomic hyperfine structure.

In the limit where atomic motion can be neglected, as
would be the case for trapped intracavity atoms, the mea-
surement strength is found to be

 M �
P
@!

�
3N��2

4�2r2�

�
g2

0

g2
0 ��2

��
2
; (5)

for probe power P, frequency ! (wavelength �), and
detuning �. Here, � is the atomic spontaneous emission
rate, r is the radius of the atomic sample, g0 is the single
photon cavity-coupling rate, and � is the Rabi frequency
associated with the drive laser.

We envisage trapping N � 1	 106 Cs atoms within the
mode volume of a L� 4 cm Fabry-Perot cavity with mir-
ror finesse, F � 3	 105 and ROC � 25 cm. Parameters
derived from these cavity properties are listed in Table I,
and the measurement strength is found to beM� 2:5 MHz
compared to a cavity decay rate of �� 12 kHz. This
corresponds to the many-atom cavity QED strong-coupling

regime, Ng2
0=��� 1. Given that the total atomic scatter-

ing rate for these parameters is �s � 2:5 kHz, spontaneous
emission due to the probe can be reasonably neglected as
fewer than 100 atoms will be scattered on average in the
measurement time.

Figure 4 demonstrates the level of performance that we
expect from the feedback-stabilized measurement given
the parameters in Table I. Five typical simulated measure-
ment trajectories are shown in Fig. 4(a)1. Comparing theQ
functions in Figs. 4(a)2 and 4(a)3 with those in Fig. 2
suggests that there is little qualitative difference in this
measurement relative to the ideal � � 0 case. In general,
we expect that M� � will be needed such that the mea-
surement can reduce the cavity mode to a good approxi-
mate number state prior to appreciable decay.

A quantitative analysis of the feedback stability was
conducted by computing the distance of the cavity state
from the target eigenstate as a function of time. To do so,
we employed the following distance metric,

 D �Qt� � 1�
1

�4�n
?�1�n?!

Z
C
j�j2n

?
e��1=4�j�j2Qtd�:

(6)

Note that D is a scalar functional from the space of Q
functions into the real numbers between zero and one,
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FIG. 3 (color online). Cavity QED implementation of the
continuous photon number measurement.

TABLE I. Simulation parameters used to analyze experimental
feasibility of a cavity QED feedback implementation.

Parameter Symbol Value Units

Probe power P 1 	W
Probe wavelength � 852.35 nm
Probe detuning � 2 GHz
Cavity decay rate � 12 kHz
Cavity-coupling rate g0 200 kHz
Atom sample radius r 110 	m
Drive laser intensity I 1=4 Isat

Feedback dc gain G 20 dB
Detector efficiency � 80 %
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D��: L2�C� ! R�0;1�. Moreover, D assumes the value
D�Qt� � 0 only when the cavity is in the target number
state, its maximum value D�Qt� � 1 when the cavity is in
any other number state and smoothly interpolates other-
wise. Also note that D�� is related closely to the fidelity of
the cavity mode with respect to the target number state as
F��̂t� � 1�D�Qt�. We find that the distance between the
cavity state and the target eigenstate, as measured by D,
strictly decreases in expectation with time, DE�D�Qt�� �
0. Figure 4(b) illustrates the time evolution of the distance
measure averaged over 105 trajectories for different cavity
decay rates. The experimental parameters in Table I corre-
spond to M=�� 200, which leads to an n? � 2 number
state with better than 99% fidelity. As expected, the quality
of the state preparation is degraded for high cavity decay,
with F� 50% for M � �.

Given these findings, quantum feedback stabilization of
a continuous cavity photon number measurement will
likely provide a practical route to heralded production of
arbitrary deterministic photon number states. The proce-
dure is anticipated to be robust to reasonable uncertainty in
the intracavity atom number, as each individual atom is
only weakly coupled to the cavity and fluctuations inM are
feedback suppressed. Thus, hidden deterministic prerequi-
sites, such as having to trap exactly N
 atoms to produce
the number state with n
 � N
 photons [3,4], are avoided.
Our feedback procedure will almost surely rival determi-
nistic cavity QED single photon sources [4] while offering
verifiability and less demanding cavity coupling. High-
fidelity extraction of n > 1 number states is currently being
investigated, without neglecting the importance of intra-
cavity number states for metrology and quantum informa-
tion science.

Many thanks go to Ivan Deutsch and Ramon van Handel
for helpful comments. Additional information can be
found at http://qmc.phys.unm.edu.
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[20] D. A. Braje, V. Balić, G. Yin, and S. E. Harris, Phys.
Rev. A 68, 041801(R) (2003).

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Scaled Continuous Measurement Time (Mt)

1.0

2.0

1.5

2.5

0.5

10

Ph
ot

on
N

um
be

r

(a2 a() 3)

Mt = 10Mt = 1

M / κ ∼ 200(a1)

Near-Ideal 
n* = 2 Number States

Q
 F

un
ct

io
n

x

y

x

y

Trajectory in (a2) - (a3)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Scaled Continuous Measurement Time (Mt)
10

D
is

ta
nc

e 
fr

om
 T

ar
ge

tN
um

be
r 

St
at

e

1.0

0.1

0.01

0.001

(b)

κ = 0

κ = 12 kHz

κ = 25 kHz

M / κ = 200

κ = 0 (ideal)

M / κ = 100

M / κ = 10

M / κ = 2

κ = 250 kHz

κ = 1.25 MHz

FIG. 4 (color online). Simulated feedback-stabilized photon number measurement trajectories (a) generated using the parameters
listed in Table I and feedback stability (b) for different cavity decay rates (solid lines depict theoretical results).
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