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Difference between a Photon’s Momentum and an Atom’s Recoil
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When an atom absorbs a photon from a laser beam that is not an infinite plane wave, the atom’s recoil is
less than 7k in the propagation direction. We show that the recoils in the transverse directions produce a
lensing of the atomic wave functions, which leads to a frequency shift that is not discrete but varies
linearly with the field amplitude and strongly depends on the atomic state detection. The same lensing
effect is also important for microwave atomic clocks. The frequency shifts are of the order of the naive
recoil shift for the transverse wave vector of the photons.
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It is well known that an isolated atom recoils with a
momentum 7k when it absorbs or emits a photon of wave
vector k from an infinite plane wave. A laser beam that
propagates in the z direction and is not infinite in the
transverse directions must have nonzero transverse wave
vectors k, and ky. Therefore, for physical laser beams, k,
must be less than k = (k> + k,2 + k,%)!/2, raising the
question of whether the photon recoil of an atom is less
than Ak. Three conceptually appealing choices are as fol-
lows: (1) the photon recoil is 7k in the z direction; (2) the
photon recoil is only 7k, in the z direction; (3) the photon
recoil is %k, in the z direction, and *#k, and ihky in the x
and y directions, so that the magnitude of the recoil is 7k.
Recent analysis of precision measurements of the photon
recoil [1-3], which helps determine the fine structure
constant, has shown that the first choice is excluded
[4]—the recoil in the z direction must be 7k, because the
recoil is intimately connected to the gradient of the phase
of the field [5]. Here we analyze the transverse recoil and
the systematic frequency shift that it produces when cold
atoms interact with electromagnetic fields that have trans-
verse sizes of the order of 1 cm. These transverse wave
vectors are in the microwave regime and produce effects
that need to be considered at the level of the present
accuracy of atom interferometer experiments and micro-
wave atomic clocks.

None of the three choices above is fully correct. The
atoms in these experiments are localized to typically less
than 1 cm, spanning less than one transverse wavelength
of the field. Therefore the atoms do not diffract with
discrete microwave photon recoils. Instead, they experi-
ence deflections in the transverse directions that are de-
termined by the local gradient of the field strength. The
field also acts as both a positive lens and a negative lens
on the atomic wave functions. These effects, in the micro-
wave Stern-Gerlach regime, are analogous to those in
the optical Stern-Gerlach regime, in which the localiza-
tion is less than an optical wavelength [6]. We show that
the deflection and the lensing of the wave functions pro-
duce novel frequency shifts for atomic clocks and
interferometers.
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Precise measurements of the photon recoil with atom
interferometers [1,3] and precision spectroscopy [2] have
used laser beam waists of 2 mm and 1 cm, for which the
difference between 7k, and 7k gives 8 to 0.4 ppb correc-
tions. Current experiments have an accuracy of 4—6 ppb
and future work aspires to 0.1 ppb accuracy [1].

Laser-cooled microwave atomic clocks have advanced
to the point where the frequency shift due to microwave
photon recoils must be considered [7,8]. When an atom at
rest absorbs a photon from an infinite plane wave, conser-
vation of energy and momentum for the recoiling atom
leads to a shift of the resonance frequency of hAv =
h2k*/2 m [9]. For the cesium clock transition, the recoil
velocity is 0.1 uwm/s and, although very small, it naively
leads to a frequency shift of 1.5 X 107'® [10], which is
comparable to the current accuracy of 5 X 1076 for laser-
cooled cesium fountain clocks [8]. We show that instead of
the usual recoil shift Av, a comparable frequency shift
occurs in clocks due to lensing and deflection of the atoms
that scales in novel ways with the interrogation time and
the size of the wave functions.

In clocks and atom interferometers, the atoms pass
through two or more oscillatory fields that are separated
by interrogation times 7', as depicted in Fig. 1 for a clock
[8,11]. For a resonant field, the Hamiltonian for the inter-
nal degrees of freedom is H;, = %hwag + 30 Q(r, 1) ¥
cos(wr)o;. Here Q(r, ) is the Rabi frequency [12], w is
the transition frequency, and o is the usual Pauli matrices.
We make the rotating wave approximation and rotate to a
basis in which H,, is diagonal to get the usual dressed
states |1) and |2). The Schrodinger equation is then i9, ¥ =
[—7V?/2m + L Q(r, 1)o3 ]¥. For atom interferometers, the
dressed states for a traveling wave are equal superpositions
of the ground and excited states, |g, ko) and |e, ko, + ki,),
which include the photon recoil 7k, in the z direction.
Note that we do not include the photon sector in our
dressed states. The transverse forces are described by this
Schrodinger equation.

We solve the Schrodinger equation using a Gaussian
wave packet for ¥ that has an initial central position r,
and momentum kg, and a position width A. The lowest
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FIG. 1 (color online). (a) An atom interacts with an electro-
magnetic field for a short time at #; and #,. The spatial variation
of the dipole energy for the two dressed states, depicted in the
graph, deflects the atomic wave functions and acts as a positive
lens on the dressed state |2) and a negative lens on |1). (b) The
spatially dependent difference of dressed state populations leads
to a frequency shift of the order of the recoil shift for the
transverse wave vector.

order effect of the field interaction at time ¢, is given by the
Raman-Nath approximation, which neglects kinetic energy
terms in the Schrodinger equation. Integrating the
Schrodinger equation with respect to time gives a position
dependent phase shift to the wave function. For an atomic
clock with a rectangular microwave cavity, the field is
B(r) = cos(k;,x) cos(k;,z) with wave vector ky and k;, =
0. It gives a scattering phase shift of

UG, 1) = expl—Lig(k,) cosky o] (1)

acting on W(x, y, k., t~). The natural basis for this interac-
tion is the transverse position and longitudinal momentum
k., instead of a pure position basis. Here 7* are just before
and after the field acts for a short time at #,, ¢(k,) =
boko./k., and ¢y = /2 for a /2 pulse. If the atomic
wave functions spanned many transverse wavelengths, it
would be helpful to expand exp[ = Ji¢ (k) cos(k;,x)] as a
sum of Bessel functions J,[3 ¢(ky,)]exp[ +ink,,x] since
each term would represent the scattering of n photons.
Here, because the atoms are restricted to less than a trans-
verse wavelength, this expansion leads to many interfering
terms [10] and little insight. Furthermore, it makes analytic
calculations intractable and numerical calculations diffi-
cult, especially when both transverse dimensions are im-
portant [10], as in most interferometers and clocks.

Here, we expand cos(k,x) in Eq. (1) as 1 — 1k, 2x”.
This gives a quadratic phase variation and allows us to treat
the problem analytically, even when both transverse di-
mensions are important [13]. A quadratic phase variation is
a general feature. For interferometers, the field strength of
Gaussian laser beams varies quadratically around r = 0.
For clocks, the fields of the rectangular cavity above and

the commonly used cylindrical cavity [8] both vary quad-
ratically around x =y = 0.

As in classical optics, the quadratic phase variation acts
as a lens on the incident wave. The lensing effect in Fig. 1
is clear as the atom propagates to a second field interaction
att, =1 +T.

—(x—x+8,)2 /(W —8,)?
zﬁ(WZX - Bx)

Here w,(¢t) = [h22/2m*A 2 + 2A 2]'/2 is the width and
X, is the center of the wave packet in the absence of the
field, Wix = Wx(tl)’ Wox = Wx(t2)v 5)( = 27TT¢(kz)VRW1x
describes the focusing of the wave packet, and €, =
8,x;/wy, is the deflection of the wave function due to
the atom traversing the first interaction zone a distance x;
off axis. The usual recoil shift that is associated with &, is
vg = hk, 2/4mm, and we have neglected terms of order
mk, 2A*/hT. The form of [(1|W(x, ,))|* is Eq. (2) with
the signs of €, and &, reversed. The dipole energy variation
[Fig. 1(a)] produces a spatially dependent force that acts as
a positive lens for the |2) state and a negative lens for the
[1) state. In atom interferometers, there are additional
pulses before the final field interaction and they further
contribute to the lensing of the wave function. Typical
parameters for Cs atoms at 1 uK are w,(¢;) = 1 mm, x; =
2mm, k;, = 100 m~', and T = 0.5 s. These give §, =
2 nm and €, = 4 nm, which are much less than w,,.

We now calculate the frequency shift due to the trans-
verse momentum changes. For the last field interaction, the
temporal phase of the field is shifted by ® = * /2, which
is a phase shift of the dressed states of (1 F io;)/2'/2. We
apply Eq. (1) to ¥ with wave vector k,, where normally
k, = k;. The resulting difference of the excited state
populations for ® = *=7/2 is proportional to the fre-
quency shift. In terms of the dressed states, this is

5P = [1Q2IW)> — (1) ]sin[¢(k.) cos(ky )] (3)

21w (x, )2 =& @)

Here the probability densities for the dressed states are
given by Eq. (2). This is divided by the amplitude of the
Ramsey fringes, APy, to get the frequency shift v =
S8P/27wTAPg. We calculate APy by taking the difference
of the excited state probability for ® = 0 and ® = 7

APg = 2Im[(W[1)(2|W)]sin[¢(k.) cos(kyx)].

Equation (3) shows that there will be a frequency shift
whenever one of the dressed states has a greater detection
probability. The lensing will generally give the |2) state a
greater detection probability at the center [Fig. 1(b)].
Expanding Eq. (3) to first order in J, and €,,

ﬁWZX Wox Wox Wo,

X sin[ ¢ cos(ky,x)]. 4)

Here we take ky, = 0 for clarity and also neglect the
variation of ¢(k,) because the spread of k, is typically of
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order 1% of k.. A simple case to consider is detecting only
a small region around x = 0 of a wave packet that prop-
agates on the axis (x; = x, = 0). For a 7/2 pulse, ¢, =
7r/2 and the sin[- - -] term in Egs. (3) and (4) is essentially
equal to 1. This gives v = ¢ovrw;/wo,. Therefore, the
frequency shift due to the lensing is of the order of the
usual recoil shift, but it increases linearly with the field
amplitude (¢) and also depends on the size of the wave
functions at the field interactions. The ratio of wave func-
tion widths wy,/w,, is essentially equal to ,/(¢; + T),
where T/t, typically ranges from 1 to 5. For T/t; = 3.7
and two 77/2 pulses, v = vy/3.

In addition to the frequency shift due to focusing, the
deflection of the wave function may also lead to a fre-
quency shift. It is described by the term proportional to €,
in Eq. (4). Again, if we detect a small region around x = 0,
the frequency shift due to the deflection of the wave packet
is 8v = ¢povrx x,/w, 2. This averages to zero if x; and x,
are uncorrelated, e.g., for a large high-temperature source.
We therefore average Eq. (4) over the source distribution
and include the effects of the state detection.

The state detection process plays a critical role in de-
termining the magnitude of the lensing frequency shift.
The frequency shift from Eq. (3) is very small if the atomic
cloud is uniformly detected because each atom is equally
split between both dressed states and usually sin[- - -] can

|

2 Welx

ﬁ = V7 ulty—1)wo,
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f*a xpe i Ve

be neglected. However, several effects inhibit uniform
detection. These include finite laser beams, the fluores-
cence collection optics, and apertures in the experiment.
In Fig. 1(b) we plot the spatial variation of the focusing
frequency shift, Eq. (4) with €, = 0. For there to be a large
cancellation of the lensing shift, the detection intensity
must be uniform over the entire 1/¢> diameter of the
atomic cloud. If the excited state is detected with a laser
beam that has the same width as the final atomic cloud, the
frequency shift is half as large as that for detecting only the
central region. In atomic clocks, the most spatially selec-
tive element is the aperture of the microwave cavity. It has
a typical radius of 5 mm, whereas the final atomic cloud
has a 1/e? radius of 1 cm [8].

Next we average the lensing frequency shift over the
initial spatial and velocity distributions, and also study the
effects of the apertures. The result is independent of the
coherence length of the atomic wave functions [14] be-
cause, in essence, the frequency shift from Eq. (3) is
proportional to the difference of the dressed state popula-
tions, whether the dressed state populations are for one
atom or the ensemble. Neglecting the variation of sin[- - -]
in Eq. (4), we average over the initial position and velocity
distributions that are centered on the cavity axis, with
|x;| < a, where a is the aperture radius and the 1/¢ velocity
width is u = (2kgT,,/m)"/?. Integrating over position
|x| < a at time £,, we get

—2ax|(wy 2+t i) taw,, 21/ut (= 1) w, 2 dxl

Vg 0 ; a  L,—x/w,?
sin(¢) f,ae Vel Erf[

Here, the size of the cloud at ¢, and ¢, are w.|, = (w()x2 +
Wt )2 and wy, = (wy, > + u?t,%)"/2. The integral limits
represent the constraint of the aperture at t; and we have
neglected diffraction. Often w,, is less than a, and then
the integrals are essentially over all x; (no aperture at f),
giving

W 2 — 4
I R ) S ©)
—_— ¢ N
v 0 Jmsin(gy)Erf(a/we,)

In Fig. 2 we show the lensing frequency shift from
Egs. (5) and (6) as a function of a and wy,. For very cold
(1 nK) atoms, the thermal expansion of the cloud is small.
If wy, < a, the atoms are uniformly detected and so there
is a negligible transverse recoil shift. For a typical tem-
perature of 1 uK, the cloud spreads to fill the second
aperture, and when wy, — 0, a larger aperture gives more
uniform detection and thus a smaller frequency shift. For a
small (1 mm) aperture, the deflection frequency shift be-
comes smaller as the initial size w, increases because x; is
less correlated with x,. For a =5 mm, 1 K is not hot
enough for x; and x, to be uncorrelated, so the more
important effect is a larger average dipole force as w,
increases to 5 mm. In Fig. 2(b), the solid curves first rise
due to larger dipole forces, and then fall with more uniform

&)

X (wm2+uzt1 t2)+awdx2
ulty—1)WorWeix

ldx,

{
detection. If the first aperture is removed [dashed curves,

Eq. (6)], the atoms see larger dipole forces if w., > a,
yielding a larger frequency shift.

In contrast to the usual recoil shift, the size of the atom
cloud at the first field interaction affects the lensing fre-
quency shift. In Fig. 3, the solid lines show the variation of
the lensing frequency shift on the time #; between the end
of the laser cooling and the first field interaction. For a
small initial cloud size, wy, = 1 mm, the shiftis very small
if the atom immediately interacts with the field [Eq. (6)]. If
t; is long, then the effect of the initial size is relatively
small. For an initial size of wy, = 5 mm, the frequency
shift is on the order of v, even for #{ — 0. In an operating
fountain clock, #; can be increased by decreasing the
launch velocity. For large ¢;, the interrogation time is
dramatically shorter, and eventually ¢, — ¢;. The dashed
lines correspond to interrogation times 7 = 1 to 0.1 s.

The lensing frequency shift also depends upon the initial
atomic state and the field amplitude. If the atom is initially
prepared in the upper state |e), the difference in the popu-
lation of |e) after detection from Eq. (3) is unchanged
because it depends only on the difference of the dressed
state populations. However, the sign of the Ramsey fringes
reverses and therefore the frequency shift reverses if the
initial state is changed. As noted above, the lensing fre-
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FIG. 2 (color online). Lensing frequency shift as a fraction of
the transverse photon recoil frequency shift v vs (a) the initial
size of the atomic cloud wy, and (b) the aperture radius a for Cs
atoms at 1 uK and 1 nK, with ¢,/f, = 0.22. The dotted lines
represent no aperture at time #; [Eq. (6)] and the solid lines
apertures at #; and #, [Eq. (5)]. The text describes three effects
manifested in the curves: detection uniformity, the variation of
the average dipole force with cloud and aperture size, and the
ensemble average as a function cloud size and temperature.
Generally, the lensing frequency shift is of the order of the
transverse photon recoil frequency shift.

quency shift is linear in the field amplitude, given by ¢y,
around ¢y = /2. At higher amplitudes, the shift will
continue to increase almost linearly for ¢, = 37/2,
5a/2, T7/2, etc., as shown by Egs. (5) and (6) [15]. For
higher powers, the k; *x* terms in Eq. (1) and
sin[ ¢ cos(ky,x,)] in Eq. (3) may be significant and can
be calculated.

The spatial extent and sensitivity of atom interferome-
ters can be increased by inserting additional photon recoils,
as many as 140, in the sequence of pulses [1,3,16]. These
fields also produce a lensing of the wave functions with
fractional errors of order k,,*/k,,>. However, the experi-
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FIG. 3 (color online). Lensing frequency shift for Cs atoms at
1 wK as a function of #;, the time between the release of the
cloud of atoms and the first field interaction. For the solid lines,
t; is changed by varying the distance to the first field interaction
with a fixed interrogation time of T = t, — #; = 0.5 s. For the
dashed lines, the distance is fixed and the atomic-fountain launch
velocity is varied, which changes both ¢; and T. Here, t; =
0.14 s for T = 0.5 s, and T ranges from 1 to 0.1 s.

ments are often performed as dual interferometers, and
both interferometers will nominally have the same fre-
quency offset. Thus, when the result is the difference
frequency, it is less sensitive to the transverse momentum
changes.

In summary, when an atom absorbs a photon from a laser
beam propagating in the z direction, it experiences a dis-
crete recoil in the z direction that is less than 7k if the laser
beam is not infinite in the transverse directions. The spatial
gradient of the dipole energy in the transverse directions
produces transverse forces. These lead to a small lensing of
the atomic wave function, not to resolved diffraction with
discrete momenta. The fields of microwave cavities pro-
duce similar dipole forces and the same lensing effects. If
the final state detection is uniform, there is essentially no
frequency shift associated with the transverse dipole forces
and the recoil shift is given by only fik,. In general, the
transverse dipole forces do not affect the average position
or width of the atomic wave function, but they do affect the
phase in a way that can be expressed as a difference of
dressed state populations. When the central part of the
atomic distribution is preferentially detected, there is a
frequency shift of the order of the recoil shift for the
transverse wave vector. For a traveling wave laser beam,
the total recoil shift is then closer to the usual recoil shift
given by hk. The shift due to the transverse dipole forces
reverses with the initial atomic state and depends on the
field amplitude, the state detection homogeneity, and the
size of the atomic cloud at the field interactions.
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