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The field dependence of the electron spin resonance in a helimagnet LiCu2O2 was investigated for the
first time. In the paramagnetic state, a broad resonance line was observed corresponding to a g factor of
2.3. In the critical regime, around the paramagnetic to helimagnetic phase transition the resonance
broadens and shifts to higher frequencies. A narrow signal is recovered at a low temperature, correspond-
ing to a spin gap of 1.4 meV in zero field. A comprehensive model of the magnons is presented, using
exchange parameters from neutron scattering [T. Masuda et al. Phys. Rev. B 72, 014405 (2005)] and the
spin anisotropy determined here. The role of the quantum fluctuations is discussed.
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Ground state solutions of the antiferromagnetic
Heisenberg model range from the Néel state to valence
bond solids and resonating valence bonds, depending on
the interactions, the dimensionality and connectivity of the
system, and other factors [1,2]. When the ground state has
long range Néel order, the excitation spectrum is gapless at
q � 0. This follows from the rotational invariance of the
Hamiltonian: The creation of long wavelength excitations,
where the relative angle of the neighboring spins changes
only by an infinitesimal amount, costs very little energy.
Gapless excitations, on the other hand, cause strong quan-
tum fluctuations, suppressing or destroying the Néel state
[3]. The spin-orbit coupling leads to new terms in the
Hamiltonian, including the single ion anisotropy, the ex-
change anisotropy, the Dzyaloshinskii-Moriya coupling,
and others. The coupling between the direction of the spins
and the lattice removes the rotational invariance in many
real materials, creates a gap in the spin wave spectrum, and
contributes to the stability of the quasiclassical ground
state.

In this work, we investigated the magnetic excitations in
a quasi-one-dimensional helimagnet, LiCu2O2, in fields of
0–14 T and at temperatures 2.5–60 K. The main result is
that in the ground state two of the three magnon branches
are gapped with � � 11:7 cm�1 � 1:4 meV. Our calcu-
lations reveal that this gap is due to a spin-lattice coupling
of D � 0:083 meV. We show that the proper treatment of
the helical order of the spins explains the order-of-
magnitude difference between the coupling parameter
and the gap, enabling this weak coupling to reduce the
quantum fluctuations significantly. LiCu2O2 crystallizes in
an orthorhombic structure with the space group Pnma and
lattice constants a � 5:730 �A, b � 2:86 �A, and c �
12:417 �A [4]. The Cu2� ions carry magnetic moments
with spin 1=2, and they form quasi-one-dimensional chains
with zigzag ‘‘ladders’’ along the b direction (Fig. 1). The
material has two characteristics relevant to frustrated quan-
tum magnets: The exchange interaction goes beyond the

first neighbors, and the structure has a triangular motif
susceptible to frustration.

Quantum effects and fluctuations are expected to be im-
portant since the spins are 1=2 and the system is quasi-one-
dimensional. Indeed, in an early work, Zvyagin et al. in-
terpreted the broadening and disappearance of the ESR
signal in terms of a ‘‘dimer liquid’’ state below the 24 K
phase transition [5]. However, instead of a quantum liquid
state, NMR,�SR, and neutron scattering results revealed a
quasiclassical helical spin order along the chains, with a
wave vector Q incommensurate to the lattice [6–9]. All
spins were found to be parallel to the a-b plane. In the q �
�Q region, the ‘‘acoustic’’ magnon branches were ob-
served, but the energy resolution was not sufficiently
high to exclude or measure a possible gap [10]. ESR has
the resolution to address this question, and the application
of the external static magnetic field can be used to explore
the spin dynamics further. Note that in ESR the magnetic

FIG. 1 (color online). Crystal structure of LiCu2O2, based on
Ref. [4]. The magnetic Cu2� ions (connected in zigzag fashion)
are dark blue, the nonmagnetic copper (between the layers) is
green, the lithium (within the layers) is light blue, and the
oxygen (denoted by the large bubbles) is red. The dark blue
bonds emphasize the triangular spin ladder.

PRL 97, 067206 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
11 AUGUST 2006

0031-9007=06=97(6)=067206(4) 067206-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.97.067206


excitation is at q � 0, but in the presence of a magnetic
superlattice it couples to the modes at q � �Q as well.

The measurements were performed on an oriented single
crystal sample of dimensions 3 mm� 6 mm� 0:5 mm.
According to the Laue diffractogram, the c axis is along
the shortest dimension of the sample; the a and b directions
are parallel to the edges of the slab. There is a twinning in
the a-b plane, as is typical of most LiCu2O2 samples. Spin
resonance was detected in the transmission of the far
infrared light, measured at Stony Brook University’s high
magnetic field or infrared facility at the U12 IR beam line
of the National Synchrotron Light Source. The light propa-
gated parallel to the static magnetic field and passed
through the sample along the c direction. The polarization
of the incident light was controlled and set to several
directions within the a-b plane.

Figure 2 shows the temperature dependence of the spin
resonance at 12 T field. The raw transmission curves were
normalized to the transmission of the sample in 0 T at 25 K,
when no spin resonant absorption is expected. The oscil-
lations seen in the baseline of the frequency dependence
are residuals of the interference fringes seen in the raw
spectra. These fringes are common and well understood for
samples of plane-parallel geometry.

At high temperatures, a broad resonance at the ‘‘free
spin’’ frequency of @! � g�BH with a g factor of g � 2:3
is observed. The ESR line starts to broaden below 30 K; all
of this is in agreement with earlier ESR investigations
[5,11,12]. In the critical regime around 22–24 K, the
ESR line is about 3– 4 T broad (full width at half maxi-
mum), and it shifts to a higher frequency. Below 15 K, a
narrower signal is recovered at a markedly higher fre-
quency. This signal, characteristic to the development of
a spin gap in the ordered phase, has not been seen in earlier
spin resonance works [5,11,12], due to limitations in ac-
cessible fields and frequencies in those studies. Measure-
ments at several other fields (8, 10, and 14 T) yielded
results qualitatively similar to the behavior presented in
Fig. 2 and will be published elsewhere. Choi et al. sug-
gested a transition from helimagnetic to Néel order [13] at

T � 9 K, but there is no indication of a change in the ESR
signal in that range.

Zvyagin and co-workers measured ESR in the paramag-
netic state at 277 GHz (9:2 cm�1) [5]. They observed the
broadening and disappearance of the ESR signal, interpret-
ing it in terms of the formation of a spin singlet liquid state
above the ordering temperature. In fact, as our data show,
the integrated intensity of the signal remains approxi-
mately constant as we cross the phase transition tempera-
ture. Vorotynov et al. observed an ‘‘antiferromagnetic
resonance’’ (AFMR) signal at �30 GHz (1 cm�1)
[11,12] in zero field, with an unexpected and unexplained
magnetic field dependence and anisotropy. There is no
information about the intensity of this signal relative to
the ESR in the paramagnetic state. However, since nearly
all of the spectral weight of the paramagnetic resonance
remains in the high field or frequency range studied here,
the AFMR signal at 1 cm�1 must be relatively weak and
may be related to low energy processes that are secondary
to the physics of this material.

Figure 3 shows the field dependence of the spin reso-
nance at low temperatures. The three data sets in the upper
panel correspond to the different polarization states of the
incident light. Each set of curves was obtained by dividing
the measured spectrum with a reference spectrum recorded
at a temperature above the phase transition in zero external
field. The resonance line shapes, frequencies, and the in-
tensities are similar for all three polarization states. The
zero-field resonance at 11:7 cm�1 is visible in two of the
data sets. The most striking feature is the dramatic increase
of the resonant absorption at higher magnetic fields.

To extract the field dependence of the resonant fre-
quency, we took the average of the three sets of data and
assembled an intensity map (Fig. 4). In terms of simple,
two-sublattice antiferromagnets, both the intensity and the

FIG. 2 (color online). Temperature dependence of the ESR
signal at 12 T magnetic field. The measured transmissions,
relative to the transmission in zero field, 25 K, are shown.
Colors indicate the temperature.
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FIG. 3 (color online). Field dependence of the transmission at
2.5 K. The three sets of curves represent the transmission relative
to the transmission at high temperature and zero field.
Top: Partially polarized light, relative to 25 K. Middle: Light
polarized parallel to the long axis of the sample, relative to 20 K.
Bottom: Polarization along the short axis, relative to 25 K. The
black arrow emphasizes the nonvanishing spin resonance line
intensity at 11:7 cm�1 in zero field.
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field dependence are surprising. The intensity of the anti-
ferromagnetic resonance should have a very weak field
dependence [14] only. More importantly, the typical field
dependence of the resonance frequency in antiferromag-

nets (! /
�������������������
H2 �H2

0

q
) cannot be fitted to the data without

residual systematic deviations.
The model used for the magnon spectrum [10] was

adopted to evaluate the results presented in Fig. 3. We
extended it to finite magnetic fields perpendicular to the
plane of the spins and added the terms responsible for the
spin gap. The Hamiltonian is

 H �
X
i;j

J1Si;jSi�1;j � J2Si;jSi�2;j � J4Si;jSi�4;j

� J?Si;jSi;j�1 � g�BHS
y
i;j �DexS

y
i;jS

y
i�1;j: (1)

The indices i and j run along and perpendicular to the
double chains, respectively. J1 is the coupling between
along the diagonal ‘‘rungs’’ of the ladder, J2 and J4 are
the nearest neighbor and the second neighbor couplings
along the chain, and J? is the interchain coupling. The
‘‘easy plane’’ is represented by the exchange anisotropy of
Dex < 0 (the negative Dex is required because the orienta-
tion of the nearest neighbor spins has an antiferromagnetic
character). Following conventions established in the litera-
ture [15,16], the reference frame for the spin components is
selected so that the magnetic field H is applied along the y
directions and in zero field the spins are in the x-z plane
(i.e., the crystallographic c direction is parallel to the y
axis). In finite magnetic field, the spin directions are on a
cone whose axis is parallel to y.

The ground state and the spin wave excitations of this
model were found with the methods described in
Refs. [10,15–17]. Following ‘‘model 1’’ of Masuda et al.
[10], we used J1 � 6:4 meV, J2 � �11:9 meV, J4 �
7:6 meV, and J? � 1:8 meV, and in zero field and with
no anisotropy we reproduced the fits to the published spin
wave spectrum. After carefully tracing the factor 2’s, we
believe that the coupling constants published in the pre-
print version of Ref. [10] were correct.

In general, a helical spin arrangement possesses
3 Goldstone modes, one at !�0� corresponding to the
free rotation of the ordered moments within the helical
plane and two degenerate ones at !��Q� associated
with the tilting of the plane of the helix [16,18]. The easy
plane anisotropy generates a finite spin gap at �Q,
where Q � ��=a;�=b� is the ordering wave vector with
� � 5:2 rad (the angle between subsequent spins on the
same leg of the ladder). In terms of the Fourier transform
of the exchange interaction Jq � 2	J1 cos�bqb=2� �
J2 cos�bqb� � J4 cos�2bqb� � J? cos�aqa�
, the gap is
� � 2S

��������������������������������
J0 cos��=2�Dex

p
, where the effective exchange

coupling is defined as J0 � �J2Q � J0�=4� JQ=2.
The application of external magnetic field tilts the spins

out of the x-z plane and lifts the degeneracy of the �Q
points, resulting in distinct spin gaps and different spin

susceptibilities (Fig. 4). The angle � to the y axis is de-
termined from cos��g�BH=	2S�Dex�J0=2�JQ=2�
.

The magnon spectrum is !�k� �
������������������������������������������
�Ak � A�k�

2 � 4B2
k

q
�

Ak � A�k, where the spin resonance frequencies are ob-
tained by substituting k � �Q. Here we used
 

Ak �
S
2

�
H
S

cos��� �Dex	sin2��� cos�bky� � 2cos2���


�
1

4
	Jk�Q�1� cos����2 � Jk�Q�1� cos����2


� sin2����Jk=2� JQ� � cos2���J0

�
;

Bk �
S
2

�
sin2���

4
	Jk�Q � Jk�Q � 2Jk


�Dexsin2��� cos�bky�
�
: (2)

The continuous lines in the figure represent the center
frequencies of the two branches generated by the applica-
tion of the external field. The strength of the resonance line
was set according to the calculated spin susceptibility, and
lifetime effects were simulated by Lorentzian line shapes
of 0.1 meV relaxation rate, independent of field. On the
lower branch, the strong absorption at high fields gradually
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FIG. 4 (color online). Upper panel: Intensity map based on the
average of the three data sets shown in Fig. 3. Lower
panel: Intensity map generated from the calculated frequencies
and susceptibilities, based on ‘‘model 1’’ described in the text.
The continuous and dashed lines represent the resonance fre-
quencies corresponding to two models under consideration.
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decreases as the field is lowered, due to the field depen-
dence of the susceptibility. The susceptibility belonging to
the upper branch is so small that the corresponding reso-
nance signal is below the noise level.

In order to obtain the near-perfect agreement with the
experiment, we adjusted two parameters: the magnitude of
the anisotropy D � Dex cos��=2� � 0:083 was set to re-
produce the zero-field gap, and the g factor was g � 1:85.
Instead of using an exchange anisotropy in Eq. (1), one
may use single ion anisotropy or Dzyaloshinskii-Moriya
interaction, with very similar results [19]. The microscopic
origin of all of these interactions is the spin-orbit coupling,
but ab initio calculations are difficult. Moriya [20] esti-
mated the anisotropic component of the exchange interac-
tion in the order of D� ��g=g�2J, where �g is the
g-factor shift in the paramagnetic state and �g=g is a
measure of the spin-orbit coupling. A spin-lattice coupling
in the range of D� 100 �eV is therefore consistent with
the g factor ranging between 1.95 and 2.3 in the paramag-
netic state [11,12]. The energy gap scales linearly with the
spin-orbit and exchange couplings, �� ��g=g�J.

Neutron scattering results would be consistent with a
different set of exchange parameters (called ‘‘model 2’’ in
Ref. [10]), characterized by large antiferromagnetic J1 and
J2 (J1 � 105:5 meV, J2 � 33:8 meV, J4 � �1:6 meV,
and J? � 0:23 meV). It was impossible to get adequate
fits to the observed field dependence of the gap in this
model. For example, withD � 0:0088 meV one can match
the high field behavior (see the dashed line in Fig. 4), but at
low fields the calculation misses the experiment (see also
Fig. 3) entirely.

Quantum fluctuations suppress the sublattice magnetic
order by the amount of �S �

R g�q�
!�q� d

dq [here d is the
dimensionality of the lattice,!�q� is the magnon excitation
energy at wave vector q, and g�q� is expressed in terms of
J�q�] [3,16]. With no spin-lattice coupling, we obtained
�S � 0:150, a 30% drop relative to spin S � 1=2, which is
to be contrasted with �S � 0:197 for a two-dimensional
antiferromagnet. In the presence of the easy plane term, the
corresponding value is �S � 0:125. The coupling to the
lattice makes the quasiclassical state more stable. Further
reduction of �S is seen in the presence of the static
magnetic field. Further evidence for reduced sublattice
magnetization follows from the g factor determined in
the fit. The macroscopic energy scale of the interaction
with the magnetic field is determined by the product
g�BHSeff . In our treatment, the quantum effects were
neglected, and instead of a reduced S the quantum correc-
tion appears as a reduction of g.

In conclusion, we established that the spin wave spec-
trum of LiCu2O2 has a gap of 1.4 meV and interpreted the
experiments in terms of a model including an easy plane
anisotropy. This term in the Hamiltonian accounts for the
experimentally observed spin direction in the crystallo-
graphic a-b plane, and it also contributes to the stability
of the quasiclassical ground state. There are intriguing

possibilities for similar measurements on helimagnets
with an external field applied in the plane of the spin
rotation. The theoretical methods applied in this work
cannot be readily adapted to this new configuration. It is
known that the static spin order turns into a soliton lattice
[21,22], but calculations for the ESR excitations have not
been performed yet.
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