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The density of states in the semiclassical Andreev billiard is theoretically studied and shown to be
determined by the fluctuations of the classical Lyapunov exponent �. The rare trajectories with a small
value of � give rise to an anomalous increase of the Ehrenfest time �E � j ln@j=� and, consequently, to the
appearance of Andreev levels with small excitation energy. The gap in spectrum is obtained, and
fluctuations of the value of the gap due to different positions of superconducting lead are considered.
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Introduction.—The density of states in a metallic island
coupled to a superconductor is modified due to the prox-
imity effect [1]. The changes are most pronounced in the
vicinity of Fermi energy, where there opens a gap in the
spectrum of excitations. A ballistic chaotic normal region
coupled to a superconductor via the small constriction (NS
interface) is called the Andreev billiard [2]. The spectrum
of such billiards was calculated a decade ago [3] assuming
the random matrix description of the quantum dynamics.
This approximation is valid if the number of channels N
supported by the NS interface is small. In spite of large
efforts [4–11], there is currently no reliable calculation of
the spectrum in the most interesting case of the semiclas-
sical Andreev billiard, when the number of open super-
conducting channels scales with the Planck constant as
N � 1=@.

The properties of Andreev billiards are governed by the
Andreev reflection, when an electron trajectory is retraced
by the hole that is produced upon absorption of a Cooper
pair at the NS interface. At the Fermi energy EF, the
classical dynamics of the hole is the time reverse of the
electron dynamics, so that the motion is strictly periodic.
This periodicity, however, comes in conflict with a
quantum-mechanical evolution, since each Andreev reflec-
tion adds an extra phase �=2 to the electron-hole wave
function. This phase is compensated by the difference of
classical actions of electron �EF � "� and hole �EF � "�
along the trajectory, where " is the excitation energy. The
longer the interval t is between Andreev reflections, the
smaller energy suffices to produce the missing phase " �
@�=2t. On the other hand, the probability of a particle
trajectory to not touch the NS interface for a long time
becomes exponentially small �e�t=tD , with tD being a
dwell time. This leads to the prediction of an exponential
suppression of the density of states [3,12]

 ��"� � N�@�="2tD� exp��@�=2"tD�: (1)

However, the density of states at small excitation energies,
corresponding to large times, is not captured by this for-
mula. A new time scale responsible for the spectrum at low
energies [4] is the Ehrenfest time �E � j ln@j=�, where � is

a Lyapunov exponent in the normal billiard. For longer
times, the initial quantum wave packet �x�p� @ acquires
a macroscopic size due to exponential �e�t divergency of
trajectories. This invalidates the trajectory based derivation
that led to (1). It is believed that, below a certain energy
"gap � @=�E, the density of Andreev states vanishes ex-
actly, ��" < "gap� � 0, but the magnitude of the gap and
the mechanism of its formation remain a subject of con-
troversial discussion [6,7,10].

At finite times, the value of the Lyapunov exponent �
depends on the specific trajectory [13], leading to fluctua-
tions of the Ehrenfest time. Both the Andreev spectrum [3–
11] and the quantum to classical crossover in ballistic
transport [14–18] attracted a great deal of interest recently,
but the role of fluctuations of the Ehrenfest time was never
investigated. In this Letter, we show how the low energy
density of states is determined by the large Ehrenfest time
fluctuations and solve the long-standing problem of the
Andreev gap.

The distribution of finite time Lyapunov exponents is
parametrized as (here �0 is, e.g., an averaged time between
bounces at the walls of normal billiard)

 P��; t� � �0 exp	tFt���
: (2)

In the case of chaos, the limit Ft��0
��� � F��� exists, with

F��� specific for the dynamical model [19]. The function
F��� has a maximum at � � �0, which is the conventional
self-averaging Lyapunov exponent [F��0� � 0]. Since all
small values of � > 0 are present in the distribution (2),
one may always find (rare) trajectories with any large value
of the Ehrenfest time. To build a semiclassical eigenfunc-
tion of a two-dimensional billiard, however, one needs a
family of trajectories, all having the same interval t be-
tween the Andreev reflections. The explicit construction of
discrete Andreev levels from the tube of trajectories
(whose transverse Poincaré section is quantized via the
Bohr-Sommerfeld rule) is presented in Ref. [6]. The gap
in the spectrum is determined by the largest time for which
the number of trajectories is enough to form at least one
eigenstate. Quantitative counting of the number of trajec-
tories is done with the use of the concept of a transmission
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band [15,20]. This leads us to the expressions for the gap
and the density of states [(13) and (16) below] depending
on F���, tD, and a number N of open channels in the NS
interface.

Stroboscopic model.—All of the essential features of a
generic Andreev billiard are captured by the stroboscopic
model of the Andreev billiard, which was developed in
Ref. [8] in order to use the advantages of an open kicked
rotator [21] for large scale quantum-mechanical simula-
tions. Here we present a semiclassical solution of this
model. First, the quantum kicked rotator, a counterpart of
the classical standard map [22],

 pn�1 � pn �
KI0

�0
sin�n; �n�1 � �n �

�0

I0
pn�1; (3)

is defined by the Floquet operator

 U � exp
�
i
@�0

2I0

d2

d�2

�
exp

�
i
KI0 cos�

@�0

�
: (4)

Here I0, �0, and K are the moment of inertia, the interval
between kicks, and the kicking strength, respectively. Next,
introduce the dimensionless Planck constant @eff �
@�0=I0. If @eff � 2�=M with integer M, the coordinate
and the momentum p̂ � �i@effd=d� take discrete values
�k � 2�k=M, pm � 2�m=M, k, m � 1; 2; . . . ;M. The
Floquet operator now becomes a M�M matrix.

The electron and the hole components of the wave
function of the Andreev kicked rotator span over the
doubled 2M-sites Hilbert space with their evolution given
by the normal (U) or conjugated (U) Floquet operators.
The electron is converted into the hole by reflection at the
N-channel superconducting lead, attached at �1 < �< �2

(�2 � �1 � @N). This is done with the help of projection
matrix QwhoseN only nonzero elements areQk;k � 1, for
�1 < @k < �2. Andreev levels are found from

 U � ei"�0=@ ; U�
�1�Q�U �iQU

�iQU �1�Q�U

� �
: (5)

The classical limit corresponds to M;N ! 1, while the
dwell time tD � �0M=N is fixed. A classical particle at any
time t � n�0 has a definite position either inside the nor-
mal region or at the interface. A semiclassical quantization
of the map (5) requires a construction of the quantum states
having a similar property. A formal description of the wave
packet �, which is injected from the superconductor, stays
inside the billiard for n� 1 kicks, and then hits the NS
interface, is given by (0<m< n)

 Q� � �; QUm� � 0; QUn� � Un�: (6)

Provided such a solution is found, one easily builds 2n
eigenfunctions with the eigenvalues (r � 0; . . . ; n� 1)

 "nr ��@�
2r� 1

2n�0
;  �

�Pn�1
k�0 U

ke�ik"�0=@�
�
Pn
k�1U

keik"�0=@�

�
: (7)

"n0 with the largest possible n constitutes a gap. Below, we
always consider only the levels with r � 0. Equations (6)

and (7) are the analog of adiabatic quantization, developed
in Ref. [6] for the generic Andreev billiard.

Strictly speaking, Eqs. (6) for any n have no solutions.
However, for @! 0 where exists� N linearly independent
wave packets satisfying (6) with practically any desired
accuracy, �yQUm�� e�1=@. Finding the number of such
solutions reduces to the calculation of certain phase-space
areas called transmission bands [15].

Transmission bands.—We call the transmission band a
simply connected part of the phase-space area of the NS
interface, �1 < �< �2, 0<peff < 2�, each point �; p of
which visits the interface at the nth iteration of the map
(and does not visit it earlier). The image of the stripe �1 <
�< �2 after n iterations is another long and narrow
(curved) stripe of width �e��tN=M (see examples in
Refs. [16,17]). Phase-space overlaps of the NS interface
with its image, the transmission bands, are the areas with
approximately the shape of a parallelogram whose long
and short sides have a length �N=M and �e��tN=M,
respectively. The number Nb of (families of) Andreev
levels (7) supported by a single transmission band is calcu-
lated as its area divided by 2�@eff ,

 Nb � �N2=M�e��t: (8)

The total number of levels composed from trajectories
having the time t � n�0 between hitting the NS interface,
whose Lyapunov exponent falls in the interval d�, is (2)

 dNt � NP��; t�e�t=tD��0=tD�d�: (9)

These levels originate from the many transmission bands
of various size: Nt �

P
Nb. We may use (8) to express �

through Nb and to find the distribution of levels over the
sizes of the bands

 

dNt
d lnNb

�
N2�0

Mt
exp

�
tFt

�
1

t
ln
N2

MNb

�
�

t
tD

�
: (10)

The distribution dNt=d lnNb, found numerically for the
model (5), is shown by the histogram in Fig. 1 for times
t � 6�0 and t � 7�0. The choice of @eff � 2�� 10�7
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FIG. 1. Distribution of Andreev levels with " � @�=12�0 and
" � @�=14�0 over transmission bands of different size, corre-
sponding, respectively, to the 6th and 7th iterations of the
standard map averaged over 200 positions of the NS inteface.
Dwell time tD � 10; kicking strength K � 10. The dashed lines
show the theoretical prediction (10), with the function F found
numerically for 5 and 6 iterations. ForM � 107, the value � � 0
would correspond to Nb � 105 in Eq. (8).
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introduces a quantum-mechanical scale in classical area
counting. Direct quantum-mechanical calculation of en-
ergy levels in such an Andreev billiard would require
diagonalization of the matrix of the size M � 107, which
is beyond the reach for existing computers.

The dashed lines in Fig. 1 show the predicted distribu-
tion [Eq. (10)] with the numerically found function Ft���
for times t � 5�0; 6�0. The number of iterations in the
theoretical formula is reduced by 1 because the effective
strong (�K) stretching of the phase-space image of the NS
interface starts only from the second iteration.

Even though the trajectories with � � 0 are present for
both times shown in Fig. 1, the largest transmission bands
expected from Eq. (8) at the smallest values of the
Lyapunov exponent are absent [23]. Also, the area of the
largest existing transmission band is smaller for a larger
time. This is the actual reason for the formation of the gap
in the excitation spectrum.

The gap in spectrum is given (7) by the longest time for
which there exist the transmission bands with Nb > 1

 "gap � @�=2tmax: (11)

To illustrate the mechanism of the creation of the gap, we
show in Fig. 2 the distribution dNt=d lnNb for times t=�0 �
2–16 (shifted vertically). Counting the small areas numeri-
cally is a very time-consuming procedure [25]. Starting
from the 10th iteration, more than half of the Andreev
levels are missing due to the errors in area counting.
Still, the results for the largest transmission bands are
trustable for all times presented in the figure. The existing
estimates of the Andreev gap [6,7,10] neglected the fluc-
tuations of the Lyapunov exponents (shown by narrow
peaks connected by a line). The right solid line in Fig. 2
shows the (asymptotic) time dependence of the largest

transmission band area. The ratio of the slopes of two lines
gives the suppression of the Andreev gap due to the
Ehrenfest time fluctuations.

Density of Andreev states.—The area of transmission
band equation (8) increases exponentially for small values
of �, while the number of trajectories with small � is
exponentially small (2). These two conflicting effects al-
low one to find the value of the Lyapunov exponent leading
to the largest, for a given time, transmission band. Equating
via (10) the total number of expected levels with � < �c to
the area of a single band (8) with � � �c, we find

 F��c� � ��c � t�1
D : (12)

The value of the gap now is

 "gap � @�
�c

2 ln�N�0=tD�
: (13)

The value of �c depends on the details of the specific
model. It was shown in Ref. [24] that the derivative F0���
has a maximum at � � 0 and that F0�0� � 1. Since the
only maximum of the function F is F��0� � 0, we obtain

 �c < �0=2: (14)

Thus, we found that the value of the Andreev gap is at least
twice smaller than predicted previously [6,7,10].

Semiclassical methods may be applied for a description
of eigenstates constructed from the trajectories with the
Lyapunov exponents

 � < �max � t�1 ln�N�0=tD�: (15)

For � > �max, the number of levels per transmission band
became less than 1. The number of Andreev levels asso-
ciated with the time t may now be found by integration of
Eq. (9) over the interval �c < � < �max. If �max > �0, this
allows one to recover the known result Eq. (1), which is
now valid for " ln�N�0=tD�> @��0. The smaller energies
may exist only due to � < �max < �0, for which we found a
novel form of the density

 ��"� �
N�0

"tDF0���
exp

�
@�
2"
F��� �

@�
2"tD

�
; (16)

where � � �"=@�� ln�N�0=tD�. Equation (16) is valid for
�c < " ln�N�0=tD�=@�< �0.

Formulas (13) and (16) are the main results of this
Letter. They describe not only the stroboscopic model
but any Andreev billiard with chaotic dynamics coupled
to a superconductor through the N-channel lead. (In this
case, �0 may be replaced by the averaged time between
bouncing of the billiard walls. The precise value of �0 is not
important since N � @

�1 � tD=�0.) For the model (5), the
semiclassical density consists of a series of �-function
peaks at " � "nr (7), and Eq. (16) describes the smoothed
envelope of this distribution. Such peaks in the Andreev
spectrum were seen in simulations of Refs. [8,11].

In Eq. (13), we found the averaged value of the super-
conducting gap. Fluctuations of "gap are caused by the
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FIG. 2. The number of Andreev levels vs logarithm of the area
of transmission band dNt=d lnNb for the stroboscopic model
with K � 11, @eff � 2�� 10�7. The superconducting lead is
attached at �=10< �< 3�=10. Histograms for a different num-
ber of kicks n � 2–16 are offset vertically and multiplied by 2n.
For n � 6, theoretical distribution (10) is also shown (dashed
line). The gap amounts to "gap � @�=30�0 instead of "gap �

@�=14�0 expected from Refs. [6,7,10].
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variations in the position of the NS interface. These fluc-
tuations result from the fluctuations of the area of the
largest transmission band at a given time, which is shown
in Fig. 3. Since the area of (even the largest) transmission
band decreases exponentially with time while the number
of the bands exponentially increases, we expected that the
correlation length for fluctuation of the largest area should
also decrease with time. No such increased sensitivity is
seen in Fig. 3.

Discussion.—Among the total number of M Andreev
levels, Mq levels could not be described semiclassically,

 Mq � M1��1=�tD��1� lnN=�tD�t
�2=�tD
D � 1: (17)

These levels originate from the phase-space area of the NS
interface covered by small transmission bands, Nb � 1.
References [7,10] predict the vanishing of the density of
these levels for " < @��0=2 lnN. Although these papers do
not provide a rigorous calculation of the Andreev spec-
trum, we refer to these results as an indication that the
levels missing in the adiabatic quantization [6] do not
change the low energy density of states (16) found in this
Letter.

The density of Andreev levels (16) and the Andreev gap
(13), which we found in this Letter, depend on the entire
distribution of finite time Lyapunov exponents P��; t� [or
F��� (2)], not on the most probable Lyapunov exponent �0,
as was expected previously [4–10].

The variations of the Lyapunov exponent leading to the
fluctuations of Ehrenfest time considered in this Letter are
of the order��0. However, the corresponding variations of
the extent of the divergency of trajectories become expo-
nentially enhanced �e�t. So these are indeed the giant
fluctuations. The presented results are supported by the
classical numerical simulations. Verification of our find-
ings in a real experiment or in quantum-mechanical simu-
lations [26] remains a challenging problem.
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the position of superconducting contact. Because of the symme-
tries �! ��, �� �! �� �, only half of the 	0; 2�
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variation of the argument is shown.
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