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With the use of the generalized Gross-Pitaevskii equation it is shown that exciton polaritons in
semiconductor microcavities form a linearly polarized condensate having two branches of the excitation
spectrum. The splitting between these branches is strongly anisotropic. This anisotropy noticeably affects
the real-space dynamics of polariton condensates.
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Introduction.—Exciton polaritons in microcavities are
composite bosons expected to condense [1] at unusually
high temperatures (up to room temperature) due to their
light effective masses [2]. While a Wannier-Mott exciton is
a solid state analogue of a hydrogen atom, there are a
number of important differences between polariton and
atomic condensates which have been extensively described
in recent years. First of all, polaritons in microcavities have
a finite lifetime that usually keeps them out of equilibrium
[3]. The second, even more fundamental, peculiarity of the
polariton system is linked with the spin structure of a
polariton state: being formed usually by heavy-hole exci-
tons, the polaritons have two allowed spin projections
on the structure growth axis. In the absence of external
magnetic field the ‘‘spin-up’’ and ‘‘spin-down’’ states of
noninteracting polaritons, or their linearly polarized super-
positions, are degenerate. Interactions mix the linearly
polarized polariton states. Moreover, additional mixing
comes from the longitudinal-transverse (LT) splitting of
polaritons [4].

As a result, the polariton condensates behave differently
from the atomic condensates and superfluids even in the
thermodynamic limit. In particular, the real-space dynam-
ics of polariton droplets is expected to be qualitatively
different from the superfluid dynamics and to reveal strong
polarization effects. While theoretical simulations of the
real-space propagation of polariton condensates have been
reported recently [5], neither dispersion nor the real-space
dynamics of polarized polaritons have been addressed till
now. The goal of this Letter is to fill this gap presenting the
theory of polarization effects in the polariton condensates
in planar semiconductor microcavities.

Quasiparticle spectrum.—We first consider analytically
the excitations of the polariton condensate in thermal
equilibrium. The condensate wave function (the order pa-
rameter) can be represented as a complex two-dimensional
vector  �r; t�. The Hamiltonian density of polariton sys-
tem can be written as

 H� � �T��ir� � � 1
2�U0� 

� � �2�U1 
�2 2	: (1)

The general structure of the Hamiltonian density (1) is
similar to that of the two-component atomic condensates
[6], Josephson-junction arrays [7], helical magnets [8], and
unconventional superconductors [9]. The main differences
of the polariton condensates from these systems are the
strongly nonparabolic dispersion of noninteracting parti-
cles and the dependence of the polariton energy on polar-
ization described by the generalized kinetic energy
operator T��ir�. In writing down Eq. (1) we assume the
cylindrical symmetry of the cavity, which allows only two
isotropic quartic invariants. In terms of nonlinear optics,
the U0 term describes polarization independent properties
of the condensate, while the U1 term defines so-called
linear-circular dichroism [10].

In what follows we consider the heavy-hole exciton
polaritons having only TM and TE modes, and we neglect
the mixing with the light-hole polaritons having a split-up
mode polarized normally to the quantum-well plane [11].
With respect to the configuration of the in-plane compo-
nent of the electric field (defined by the 2D vector  ) and
the in-plane 2D wave vector k, the TM and TE modes are
longitudinal and transverse, respectively. Their dispersions
!l�t��k� are routinely found by the transfer matrix tech-
nique [4]. The modes are degenerate at k � 0 and the
energy will be calculated from the bottom of the band,
i.e., !l�t��0� � 0. Then, the kinetic energy tensor T�k� is
(@ � 1)

 Tij�k� � !t�k��ij � �!l�k� �!t�k�	
kikj
k2 ; (2)

where i, j � x, y. Using (2) one has T�k� � � !l�t� for
 parallel (perpendicular) to k.

The equilibrium properties of polariton condensates de-
pend crucially on the presence and the sign of the dichroic
U1 term. For U1 > 0 the free energy density F �
H��� � � � is minimized at a linear polarization of
the condensate (i.e., when � 
 �	 � 0). In this case the
last term in Eq. (1) contributes most and Fmin � ��n=2,
where n � � � � � is the 2D concentration of condensed
polaritons and the chemical potential is � � �U0 �U1�n.
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Note that � defines the experimentally measurable blue-
shift of the polariton emission line due to formation of the
condensate. In contrast, in the case U1 < 0 the polariton
condensate is formed with a circular polarization ( 2 �
0), that assures disappearance of the U1 term. In the ab-
sence of the dichroic term (U1 � 0) there is no superfluid
transition at any finite temperature, as it follows from
mapping the Hamiltonian (1) on the nonlinear sigma
model [12]. Clearly, the above analysis of the condensate
polarization is valid for the very dilute limit and jU1j �
�na2

s�U0 (as is the effective scattering length). Con-
sideration of fluctuations expected to affect the polariza-
tion of the condensate in the vicinity of U1 � 0 is beyond
the scope of this Letter.

The coupling coefficients U0 and U1 can be estimated
through the matrix elements of the polariton-polariton
scattering in the singlet (�2) and triplet (�1) configurations
as U0 � �1 and U1 � ��1 � �2�=2. According Ciuti et al.
[13], one usually has �1 � j�2j, so that 0<U1 <U0.
Therefore, the polariton condensate is expected to be
formed with a linear polarization. The condensate ground
state can be written then as  grd �

���

n
p

e, where e is a real
unit vector, e2 � 1 [14].

The spectrum of excitations of the polariton condensate
at equilibrium will be studied on the basis of Gross-
Pitaevskii equation

 i
@ i
@t
�
�F
� �i

� �Tij��ir� ���ij	 j �U0 
�
j j i �U1 j j 

�
i :

(3)

The excitation spectrum obtained from the Gross-
Pitaevskii equation is known [15] to coincide with that of
the Bogolyubov model and is valid at T � 0 [16]. We
follow the method of Ref. [15] (see also Ref. [17]) and
look for the solutions of Eq. (3) in the form

  �r; t� �
���

n
p

e�Aei�k�r�!t� �B�e�i�k�r�!t�: (4)

Linearizing Eq. (3) with respect to the small amplitudes Ai
and Bi we obtain
 

�Tij�k���u0�2u1�eiej��u1�!��ij	Aj
��u0eiej�u1�ij	Bj�0; (5a)

�Tij��k���u0�2u1�eiej��u1�!��ij	Bj
��u0eiej�u1�ij	Aj�0; (5b)

where u0 � nU0 and u1 � nU1. The solutions of Eqs. (5)
exist provided the quasiparticle frequency ! satisfies the
dispersion equation
 

!4 � �!2
l �!

2
t � 2�u0 � u1�!� � 2u1!�	!2

� �!l!t � 2�u0 � u1�!�	�!l!t � 2u1!�	 � 0; (6)

where !� � �!l �!t � �!l �!t� cos�2’�	=2 and ’ is
the angle between the condensate polarization e and the

wave vector k. As in the case of two-component atomic
condensates [18], in the region of small wave vectors,
where !l;t 
 minf�u0 � u1�; u1g, the solutions of (6)
give two sound branches of excitation spectrum. In the
case of polariton condensates, however, these branches are
anisotropic:

 !2 ’ 2�u0 � u1�!�; !2 ’ 2u1!�: (7)

The anisotropy of the quasiparticle spectrum is a re-
sult of both the cylindrical-symmetry breaking due to the
presence of condensate and the existence of LT split-
ting. The dispersion becomes isotropic and more simple
if one neglects the LT splitting of noninteracting polariton
bands by putting !l � !t � !0. In this case the result
becomes Bogolyubov-like: !2 � !2

0 � 2�u0 � u1�!0 �
!2

0 � 2�!0 for the quasiparticles copolarized with the
condensate (A k B k e), and !2 � !2

0 � 2u1!0 for the
cross-polarized quasiparticles (A k B ? e).

The renormalization and the strong anisotropy of the
splitting between the two branches of the polariton spec-
trum is shown in Fig. 1(a) and 1(b). The interaction con-
stants are chosen as U0 � 2:4
 10�18 eV m2 and
U1 � 0:55U0 in accordance with the estimation of
Ref. [19] and the parameters used in the next subsection;
the condensate density is n � 1015 m�2. The bare polar-
iton spectrum corresponds to a CdTe microcavity showing
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FIG. 1 (color online). Showing the dispersion of bare (dashed
lines) and renormalized (solid lines) lower-polariton branches in
the region of strong coupling. The splitting is shown in a dash-
dotted line. The wave vector is perpendicular to the condensate
polarization in panel (a) and collinear with it in panel (b).
Panel (c) shows the overall behavior of the splitting. Parame-
ters are given in the text.
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a Rabi splitting of 10 meV at zero detuning between
exciton and photon modes at k � 0. The dispersion of
polaritons is clearly strongly modified and becomes linear
close to k � 0. Note that while the splitting is enhanced in
one direction of the wave vector (k ? e in our case), it is
suppressed for its perpendicular direction. Moreover, one
can observe the crossing of renormalized longitudinal and
transverse branches. The strong anisotropy of the splitting
is better seen in Fig. 1(c).

The Gross-Pitaevskii equation (3) describes adequately
the excitation spectrum only for the case of a weakly
depleted condensate. The depletion of the condensate
nout can be calculated using the Landau quasiparticle for-
mula, which gives a reliable result for the 2D case [20]. At
low temperatures T, when the phononlike parts of the two
branches are mostly occupied, the condensate depletion is

 nout �
3��3�
2�

�kBT�
3

@
2m�

�v�4
0 � v

�4
1 �; (8)

where m� � 10�4m0 is the polariton effective mass, v0 �

��U0 �U1�n=m
�	1=2 and v1 � �U1n=m

�	1=2 are the co-
and cross-polarized sound speeds, and we neglect LT
splitting for simplicity. It is seen from (8) that nout /
n�2. For T < 20 K the depletion becomes negligible at
n � 1015 m�2; that corresponds to the experimentally ob-
served [21] blueshift �� 1 meV. Note also that the cor-
rection to the blueshift �U0 �U1�nout is of the order of a
few �eV, and it is much smaller than the anisotropic
splitting seen in Fig. 1. The above estimation is confirmed
by the numerical calculations allowing for the nonparabo-
licity of the spectrum [22].

Real-space dynamics.—In this subsection we study nu-
merically the impact of the anisotropic splitting on the real-
space coherent dynamics of polariton condensates in non-
equilibrium conditions. We take into account the pumping
and finite lifetime of polaritons following the approach of
Ciuti and Carusotto [5]. The model of Ref. [5] is, however,
generalized by us to take into account the polarization
degree of freedom. In this approach, instead of one polar-
iton wave function  �r; t�, we use its two components,
photonic ’�r; t� and excitonic ��r; t� parts, which satisfy
two coupled vector equations
 

i _’i � �T
�ph�
ij ��ir� � i�

�1
ph �ij	’j ��R�i � fi�r; t�; (9a)

i _�i � �T
�ex�
ij ��ir� � i�

�1
ex �ij	�j ��R’i

� V0��j�j�i � V1�j�j��i : (9b)

Here f�r; t� describes the exciting pump within a limited
spot and �R is the Rabi frequency. We consider the case of
zero detuning, where the exciton-exciton interaction pa-
rameters, V0 and V1, are related to the polariton-polariton
ones as V0 � 4U0 and V1 � 0:55V0. The kinetic T tensors
have a form of Eq. (2) with parabolic free-particle disper-
sions. Note also that unlike the equilibrium case considered
before, the Gross-Pitaevskii equations (9) contain the life-
times �ex�ph� in place of chemical potentials.

We consider a 1.8 ps exciting pulse of light having a
lateral size of 15 �m. It resonantly excites the ground state
of the lower-polariton branch, as well as some of the
excited states, because of its finite broadening. It is polar-
ized horizontally (along the x axis). We assume zero
temperature, the cavity photon lifetime of �ph � 7 ps,
and infinite exciton nonradiative lifetime �ex. Figure 2
shows the 2D plot of the absolute value of the photon
part of the wave function at different times for both hori-
zontal and vertical polarizations. The contrast on the plots
has been adjusted to get the best visibility. The upper
panels in Fig. 2 show the wave function before the arrival
of the maximum of the excitation pulse, when the polariton
density is very small and nonlinear effects are negligible.
The x-polarized component keeps the Gaussian spatial
shape of the exciting pulse. At the same time the
y-polarized or cross component appears in the diagonal
directions, which are the directions where the horizontal
and vertical polarizations are no more the quasiparticle
eigenstates and the presence of the LT splitting results in
the precession of polarization. At a time 2.4 ps after the
maximum of the pulse, the x-polarized component forms a
ring having the same width as the initial Gaussian pulse
(Fig. 2, middle panels). This way of motion is character-
istic for a linear dispersion. We believe that the observation
of such a ring would be a clear experimental evidence of
polariton superfluidity. After 16.4 ps, the pattern again
strongly changes. The x-polarized component consists of

FIG. 2. Real-space image of the photon part of the wave
function, showing evolution of a Gaussian shape pulse in non-
linear regime in x and y polarizations. Zero time corresponds to
the peak intensity of the pulse.
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a central peak, which is not moving or spreading and shows
radiative decay only. This static peak can be associated
with the ground state polariton condensate. At the same
time, in y polarization the rings propagate without defor-
mations, new rings forming from the center while the
external ones are expanding. The velocity of expansion is
given by the velocity of sound. This velocity depends on
the density n of the polariton condensate and it changes in
time because of the radiative decay of population. Note
also that the black cross seen in the bottom right panel in
Fig. 2 is slightly asymmetric: the horizontal band is wider
than the vertical one. It happens because of the anisotropy
of the splitting between polariton branches.

Recently Langbein [23] reported observation of the
crosslike dynamics of polarization propagation in micro-
cavities showing remarkable similarities to our Fig. 2.
However, this result cannot be associated with the super-
fluidity since (i) the interference rings were the result of
excitation of polariton excited states and not the ground
state, like in our work, and (ii) the observed cross was
symmetric. Observation of the superfluid propagation of
exciton polaritons remains an important challenge for ex-
perimentalists. The problem is mainly related to the pres-
ence of imperfections in microcavities able to attract or
scatter the condensate wave function, as it was revealed
recently in Ref. [21].

Conclusions.—We have derived the Gross-Pitaevskii
equation for a two-component Bose condensate of po-
laritons in microcavities accounting for their nonpara-
bolic dispersion, longitudinal-transverse splitting, and
polarization-dependent interactions. We have obtained
substantial deviations of the quasiparticle spectrum from
the Bogolyubov one. A remarkable peculiarity of the sys-
tem consists in the anisotropy and strong polarization
dependence of the dispersion, which results in character-
istic asymmetric crosslike distributions of propagating po-
laritons in the real space.
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