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Cooperative Shear Model for the Rheology of Glass-Forming Metallic Liquids

Marios D. Demetriou,l”‘< John S. Harmon,1 Min Tao,2 Gang Duan,1 Konrad Samwer,3 and William L. Johnson'
'Keck Engineering Laboratories, California Institute of Technology, Pasadena, California 91125, USA
*Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, California 91125, USA

3 Physik Institute, University of Goettingen, Goettingen, Germany
(Received 16 March 2006; published 11 August 2006; corrected 14 August 2006)

A rheological law based on the concept of cooperatively sheared flow zones is presented, in which the
effective thermodynamic state variable controlling flow is identified to be the isoconfigurational shear
modulus of the liquid. The law captures Newtonian as well as non-Newtonian viscosity data for glass-
forming metallic liquids over a broad range of fragility. Acoustic measurements on specimens deformed at
a constant strain rate correlate well with the measured steady-state viscosities, hence verifying that
viscosity has a unique functional relationship with the isoconfigurational shear modulus.
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Over the last three decades, several phenomenological
theories have been proposed to explain flow in metallic
glasses, most of which were founded on two hypothetical
flow mechanisms: dilatation [1] and cooperative shear [2].
By analogy to granular materials, metallic glasses were
thought to flow by deformation-induced dilatation, which
results in the creation of a microstructural “free volume™
leading to flow localization and consequent softening [1].
Owing to their ability to effectively capture the flow char-
acteristics of metallic glasses, free volume models have
been regarded as good phenomenological flow models and
have been widely embraced. Even though experimental
assessment of excess molar volume provided certain evi-
dence of deformation-induced dilatation [3,4], it has not
been possible to quantitatively link measurable free vol-
ume to flow as predicted by free volume models. To some
extent, this can be attributed to the lack of a fundamental
thermodynamic definition of “free volume” leading to
constitutive models that possibly lack thermodynamic con-
sistency. In an alternative approach [2], flow in amorphous
metals was thought to be accommodated by cooperative
shearing of atomic clusters, referred to as ‘“‘shear trans-
formation zones.” In a recent study [5], it has been shown
that plastic yielding in metallic glasses can be effectively
accounted for by adopting a cooperative yielding analy-
sis for these flow zones similar to the one developed by
Frenkel [6] for dislocation-free crystals. In the present
study, we employ such cooperative shear flow analysis to
investigate the rheology of metallic glass-forming liquids.

Following [5], a periodic energy density ¢ versus strain
v can be formulated as ¢/, = sin’(7y/4y,.), where ¢,
is the barrier energy density, and v, is a critical shear
strain limit shown to be a universal scale for metallic
glasses. Considering that the shear modulus is given by
the curvature of the energy density function, i.e., G =
¢/ dyzlyzo, a linear relationship between barrier energy
density and shear modulus can be formulated as ¢, =
(8/m%)y2G. Multiplying by an effective zone volume (),
the total energy barrier for configurational hopping be-
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tween inherent states, which can be regarded as the acti-
vation barrier for shear flow, can be expressed as
W = (8/m2)y2G). Acknowledging that the variables con-
tributing to barrier softening are G and (), the expression
for the energy barrier can be rearranged as W =
Wo(G/Gy)(Q/Qy), where G, and (), are characteristic
scales for the shear modulus and the zone volume, and
Wy = (8/7%)y2Gy Q). Taking the barrier crossing rate
normalized by an attempt frequency to follow a
Boltzmann distribution function, we can arrive at a viscos-
ity law based on barrier softening:

/M = exp[W/kT], (D

where 7)., is the Born-liquid limit of viscosity, which can
be realized in the limit of W — 0.

In the context of this analysis, Newtonian flow can be
regarded as thermally activated flow where barriers are
overcome entirely by thermal fluctuations. The viscosity
should therefore be determined by the shear modulus and
zone volume corresponding to the equilibrium configura-
tional state, G, and (), whose temperature dependence we
describe by an exponential decay function, as G,/G, =
exp(—nT/T,) and Q,/Q = exp(—pT/T,), where T, is
the glass transition temperature. The form of this function
originates from the probability distribution of inherent
configurational states in a potential energy landscape
model of a metallic glass [7]. In these expressions, n and
p are indices quantifying the contributions of G and () to
the softening of W. The equilibrium barrier therefore takes
the form W, = Wy exp(—T/T,,), where T\, = T, /(n + p).
Substituting into Eq. (1), an equilibrium viscosity law is
obtained with two parameters, W, and 7,,, as follows:

Eeefie( D] o

w

In Fig. 1, we present the fit of the equilibrium law to
Newtonian viscosity data of metallic glass-forming liquids.
The law effectively captures the Newtonian viscosity of
Zry1 2 Ti38N10CupsBeyy s [8] and PdygNiggPyy [9-11]
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FIG. 1. Fit of the equilibrium viscosity law, Egs. (1) and (2),
to Newtonian data of metallic glass-forming liquids:
Zr412Tiy38NijpCupp sBeny s (W)X PdyoNigoPa (O);

PdyoNijoCuzpPyy (<D; Pdy75Cu6Sies (P); LassAlysNiy (V);
MggsCuysY o (A). Low-temperature viscosity data were pro-
duced by three-point beam bending, continuous-strain-rate ten-
sion and compression, and parallel-plate rheometry; high-
temperature data were produced by concentric-cylinder rheom-
etry, oscillating crucible, and electrostatic levitation [8—
11,13,14,16-21].

over the entire range of temperatures studied rheologically.
Moreover, plotted on a normalized plot [12] (insert in
Fig. 1), the law captures Newtonian data of liquids ranging
from the strongest to the most fragile [13,14,16—21], and
can thus be perceived as a universal viscosity law. The
fitting parameters are given in Table I. By comparison to
free-volume based laws, the two-parameter softening law
fits Newtonian data better than the two-parameter Vogel-
Fulcher-Tammann law [22], and at least as good as the
three-parameter Cohen-Grest law [23].

As evidenced from Fig. 1 and Table I, fragile liquids are
characterized by high 7, /T, ratios, which suggests that
liquid fragility is dictated by n + p, i.e., by the combined
softening effects of G and (). Since G is determined by the
morphology of the potential energy landscape (i.e., ¢(y)),
n is expected to be unique for a given liquid. On the other
hand, () is expected to be weakly dependent on the land-

scape morphology and hence p is expected to be similar for
all liquids. Using a Debye model, one can estimate p =
2/3 [24]. From the functional dependencies of G and (),
the relationship (G/G,) = (Q/Q)"/? can be recognized,
which leads to a correlation between G and W as
(G/Gy) = (W/Wy)4, or more importantly, between G

and 7 as:
LIS A
Go Wo \Me
where ¢ =n/(n+ p)=1-2/3)(T,/T,) and G, =
G,(T,)exp(qT,/T,). Equation (3) essentially states that
variations in viscosity correlate uniquely to variations in
shear modulus.

We can now proceed to extend the softening law to the
case of a driven system. A non-Newtonian flow law can be
formulated by considering the flow-induced shift in the
specific configurational potential energy of shear zones, &,
and its effect on W. The rate of barrier softening can thus
be formulated as W, = §6W/8e, where & « 532 is the
rate of production of specific configurational potential
energy (taken to be proportional to the rate of dissipated
energy density), 7y is strain rate, and S6W/de =
(0W/aT)/(0e/0T) is a thermodynamic parameter de-
noting changes in W with respect to changes in e.
Near T, dW/oT =~ —Wyexp(—T,/T,)/T, and dg/dT =~
(oh/ BT)ITg, where h is the specific configurational en-
thalpy and (9h/0T)|7, can be evaluated from enthalpy
recovery experiments. Configurational relaxation can be
accounted for by adopting a unimolecular kinetic model
as W, (W-—W,)/1y, where 7y =1/G=
1n/[Go(W/Wy)9] is the Maxwell relaxation time.
Requiring W; = W, for steady flow, we arrive at a
self-consistent nonequilibrium law:

(W — WW/Wo)?

any*éW/de = /G
0

“

In the above equation, « is a model parameter incorporat-
ing two unknown proportionality constants: the conversion
efficiency of dissipated energy into potential energy, and a
factor quantifying the deviation of the system’s relaxation
rate from Maxwellian.

TABLE I. Fit parameters to the equilibrium viscosity law, Eq. (1), for various metallic glass-forming liquids. It is noted that 7., was
assigned a value near the Planck limit which resulted in a best fit (as typically implemented when fitting viscosity).

T,[K] T, [K] T, /T, WolJ] Moo Pa-s]
Zr41,Ti38NijgCup 5Besry s [8] 613 350 1.75 1.6 X 10718 5.6 X 1073
PdyoNigPsg [9-11] 560 222 2.52 32X 10718 4.0x 1073
Pd;Ni;Cu,; Py [13,14] 569 200 2.85 4.6x 10718 2.2X%X1073
Pd;; 5CugSig5 [16,17] 635 180 3.53 9.6 X 10718 1.0 X 1072
LassAlysNiyg [18,19] 450 314 1.43 9.2x 1071 5.3x107*
MggsCuys Yy [20,21] 405 236 1.72 1.1x10°18 1.5 x 1073
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FIG. 2. Fit of the nonequilibrium viscosity law, Eq. (4), to the
non-Newtonian data of (a) Zry; ,Tij3gNijgCu,rsBey, s [15] and
(b) PdyNi;gCuzgPyg [14]. The data were obtained by
continuous-strain-rate compression experiments using the
Instron setup described in [15]. The small discrepancy in the
Newtonian data of Zry; ,Tij3gNijgCu;,sBey, s between [8,15]
was adjusted by introducing a temperature correction of 8 K.

For Zr41.2Ti13_8Ni10Cu12_5B622_5, Ge(Tg) =~ 33 GPa [25],
and (9h/0T)ly, = 1.5 MJ/m?*K [26] which gives
5W/58 = —5.29 X 10728 m3. For Pd43Ni10CU27P20,
G.(T,) = 31 GPa [27], and (8h/9T)ly, = 2.5 MJ/m*K
[28] which gives SW/8e = —5.32 X 1072 m3. In Fig. 2
we present the solution of Eq. (4), superimposed on the
non-Newtonian data of Zry; ,Tij3gNijgCujpsBesys [15]
and Pdy;Ni;(Cu,, P, [14], produced by adjusting « to 16
and 61, respectively. Evidently, the nonequilibrium model
seems capable of effectively capturing non-Newtonian
viscosity data by adjustment of just one parameter.

We have therefore demonstrated that liquid fragility and
strain-rate sensitivity are dictated by the softening of W
which is uniquely determined by the thermodynamics of
G. We can therefore regard G as the effective thermody-
namic state variable governing flow. Contrary to free vol-
ume, which is presumed to vanish at some finite
temperature below glass transition producing a singularity
in viscosity, G is thermodynamically well behaved render-
ing the viscosity law thermodynamically consistent.
Fundamentally, G represents the isoconfigurational shear
modulus of the liquid at the high-frequency “solidlike”

limit, and unlike free volume, is a thermodynamically
well-defined and experimentally accessible property.
Accordingly, acoustic measurements during mechanical
deformation would be expected to correlate with viscosity
assessed from measuring flow stress. We shall hence at-
tempt to validate such correlation by measuring shear
moduli of stressed configurational states and comparing
them to the associated viscosities.

We utilized specimens of Zr,Tij;gNijgCujpsBes s
and Pdy;Ni;yCuy,P,, which have undergone mechani-
cal deformation at constant rates at 593 K [15] and
548 K [14], respectively. Deformation was performed for
sufficiently long time to allow a steady-state flow stress to
be attained, and upon unloading, quenching was performed
as rapidly as possible in an effort to freeze the configura-
tional state associated with that flow stress. We evaluated
the shear modulus of the quenched unloaded specimens
using ultrasonic measurements along with density mea-
surements [29]. Shear longitudinal wave speeds were
measured using the pulse-echo overlap setup described
in [25]. Densities were measured by the Archimedes
method, as given in the American Society of Testing
Materials standard C693-93. The room temperature mea-
surements were corrected to estimate the shear modulus at
the temperature of the flow experiment by accounting for
the Debye-Griineisen temperature effect on the shear
modulus of the frozen glass. We utilized measured linear
Debye-Griineisen  coefficients of ~9 MPa/K for
Zr41,2Ti13.8Ni10Cu]2'5B622'5 [25] and ~15 MPa/K for
Pd3Ni;oCuyr Py [27].
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FIG. 3. Acoustically measured shear moduli (corrected for
Debye-Griineisen effect) of quenched unloaded specimens
following steady deformation at the indicated rates:
Zr41_2Ti13'8N110Cu12<5B622.5 at 593 K (I:l) and Pd40Ni40P20 at
548 K (O). Shear modulus predicted from viscosity data using
Eq (3) Zr41A2Ti13'8Ni10Cu12A5B622A5 at 593 K (D) and
Pdy3Ni;(CuysPyy at 548 K (O). Solid lines are predictions
from Eq. (4).
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The results from the acoustic measurements are pre-
sented in Fig. 3. The measurements clearly indicate the
effect of strain rate on shear modulus. This effect has also
been observed in recent molecular dynamics simulations
[30]. In Fig. 3 we superimpose the shear moduli predicted
from viscosities using Eq. (3), along with the solution of
the nonequilibrium law, Eq. (4). As evidenced from Fig. 3,
the shear modulus measured acoustically can be ade-
quately correlated to the viscosity assessed from measuring
flow stress. The small apparent discrepancy in this corre-
lation may be related to the ex situ nature of the acoustic
experiment. During unloading and quenching of specimens
prior to measuring sound velocities, some degree of re-
laxation towards equilibrium might occur, or some fraction
of potential energy might instantaneously recover as elas-
tic, resulting in lower apparent strain-rate sensitivity.

In conclusion, we presented a rheological law based on
the concept of cooperatively sheared flow zones, in which
the effective thermodynamic variable governing flow is
identified to be the isoconfigurational shear modulus of
the liquid. We found the law capable of explaining the
equilibrium as well as the nonequilibrium flow of metallic
glass-forming liquids. We further demonstrated that varia-
tions in viscosity with both temperature and strain rate can
be uniquely correlated to variations in isoconfigurational
shear modulus, and hence verified that viscosity has a
unique functional relationship and a one-to-one correspon-
dence with shear modulus.
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National Science Foundation under Grant No. DMR-
0520565. The authors are grateful to G. Ravichandran for
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