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We present in analytic form the O��5
s� correction to the H ! gg partial width of the standard-model

Higgs boson with an intermediate mass MH < 2Mt. Its knowledge is useful because the O��4
s� correction

is sizable (around 20%). For MH � 120 GeV, the resulting QCD correction factor reads 1�
�215=12���5�s �MH�=�� 152:5���5�s �MH�=��2 � 381:5���5�s �MH�=��3 � 1� 0:65� 0:20� 0:02. The new
four-loop correction increases the total Higgs-boson hadronic width by a small amount of order 1w and
stabilizes significantly the residual scale dependence.
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Introduction.—Within the standard model (SM) the sca-
lar Higgs boson is responsible for mechanism of the elec-
troweak mass generation. It is the last fundamental particle
in the SM which has not yet been directly observed. Its
future (non-)discovery will be of primary importance for
all the particle physics. The SM Higgs-boson mass is con-
strained from below, MH > 114 GeV, by experiments at
LEP and SLC [1,2]. Indirect constraints from precision
electroweak measurements [3] set an upper limit of
200 GeV on MH.

Adopting the framework of the SM, the coupling of the
Higgs boson to gluons is mediated by virtual massive
quarks [4] and it is this coupling which plays a crucial
rôle in Higgs phenomenology. Indeed, with the Yukawa
couplings of the Higgs boson to quarks being proportional
to the respective quark masses, the ggH coupling of the
SM is essentially generated by the top quark alone. The
ggH coupling strength becomes independent of the top-
quark mass Mt in the limit MH � 2Mt.

The process of the gluon fusion, gg! H, provides a
very important Higgs-boson production mechanism over
the all MH range under consideration. The corresponding
cross section is significantly increased, by approximately
70%, by next-to-leading order (NLO) QCD corrections,
available since long [5–8]. The largeness of the correction
along with the large residual scheme dependence of the
result have motivated the calculations of the NNLO terms
[9–11]. Very recently even the leading N3LO corrections to
the inclusive cross section have been computed [12]. As a
result of these remarkable theoretical advances the theo-
retical uncertainty of the production cross section is re-
duced significantly and is estimated around 20%.

The QCD corrections to the closely related process—
the production cross section of the Higgs-boson decay into
two gluons—are presently known to NNLO [13,14] only.
Recently it was pointed out in work [15] that the ratio of
the production cross section to the decay rate is signifi-
cantly less (by a factor of 2) sensitive to higher order QCD
corrections than the individual observables, since the cor-
responding K factors are similar in size and tend to cancel

to a significant extent. The work also argues that it is this
ratio which presents the theoretical input to analyses of
Higgs couplings extractions at the LHC. Thus, the knowl-
edge of the N3LO QCD corrections to the Higgs decay rate
into gluons is highly desirable.

In this Letter we present in analytic form the four-loop
O��5

s� correction to the H ! gg partial width of the
standard-model Higgs boson with mass MH < 2Mt.

Calculation and results.—We start by constructing an
effective Lagrangian, Leff , by integrating out the top quark
[13,16]. This Lagrangian is a linear combination of certain
dimension-four operators acting in QCD with five quark
flavors, while all Mt dependence is contained in the coef-
ficient functions. We then renormalize this Lagrangian and
compute with its help the H ! gg decay width through
O��5

s�.
The effective Lagrangian can be written in the form

 L eff � 	21=4G1=2
F HC1�O01�: (1)

Here, �O01� is the renormalized counterpart of the bare
operator O01 � G00

a��G
00��
a , where Ga�� is the color field

strength. The superscript 0 denotes bare fields, and primed
objects refer to the five-flavor effective theory; C1 is the
corresponding renormalized coefficient function, which
carries all Mt dependence.

Equation (1) directly leads to a general expression for
the H ! gg decay width,

 ��H ! gg� �

���
2
p
GF

MH
C2

1 Im�GG�q2 � M2
H�; (2)

where

 �GG�q2� �
Z
eiqxh0jT��O01��x��O

0
1��0��j0idx (3)

is the vacuum polarization induced by the gluon operator at
q2 � M2

H, with q being the external four momentum.
It is customary to write Eq. (2) in the form

 ��H ! gg� � K�Born�H ! gg�; (4)
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where (GF is Fermi’s constant)

 �Born�H ! gg� �
GFM

3
H

36�
���
2
p

�
��nl�s �MH�

�

�
2
; (5)

and so-called K factor reads:

 K �
72�3

M4
H

C2
1 Im�GG�q2 � M2

H�

���nl�s �MH��
2

� 1� . . . : (6)

The coefficient function C1 is known in N3LO [17–19] and
reads
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Here ‘�t � ln�
2

M2
t
, with Mt being the on-shell top-quark

mass; we have displayed for generality the result with the
effective number of light quark flavors denoted as nl. In the
numerical evaluation we have set � � Mt and nl � nf 	
1 � 5. �n 
 ��n� is the Riemann’s Zeta function.

Thus we are left with the calculation of the last factor in
Eq. (2), namely, the absorptive part �GG in N3LO, that is
to �3

s . In fact, it turned out to be more convenient to
calculate the correlator (3) per se and take its absorptive
part subsequently. Since �GG starts in the leading order
from a one-loop diagram, the O��3

s� calculation faces as
many as 10 240 four-loop diagrams [at NNLO [13] the
number was 403].

The overall strategy of our calculations was identical to
that used by us before in works [20,21]. First we generate
the contributing diagrams with the package QGRAF [22].
Second, using the criterion of irreducibility of Feynman
integrals [23,24], the set of irreducible integrals involved in
the problem was constructed. Third, the coefficients multi-
plying these integrals were calculated as series in the
1=D! 0 expansion with the help of an auxiliary integral
representation [25]. Fourth, the exact answer, i.e., a ra-
tional function of D, was reconstructed from this expan-
sion. The major part of the calculations was performed on
the SGI Altix 3700 computer (32 Itanium-2 1.3 GHz pro-
cessors) using the parallel version of FORM [26–28] and
took about two weeks of calendar time in total.

After renormalization, our result reads

 Im �GG�q2� � q4 2
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(11)

where a0s stands for ��nl�s =�.
In Eqs. (9)–(11) we have set �2 � q2, the full � depen-

dence can be easily recovered with the standard RG tech-
niques from the fact the product

 ���nl��a0s��
2�GG�a0s; �=q

2�

is scale independent [16]. In numerical form Im�GG reads
(we set nl � 5)

 

2q4

�
Im�GG � 1� 12:4167as � 68:6482a2

s

	 212:447a3
s : (12)

In order to better understand the structure of the �3
s term in

(12) it is instructive to separate the genuine four-loop
contributions from the function �GG�q2� from essentially
‘‘kinematical,’’ so-called �2 terms originating from the
analytic continuation. For a given order in �s these extra
contributions are completely predictable from the standard
evolution equations applied to the ‘‘more leading’’ terms in
�GG�q2� proportional to some smaller powers of �s. The
corresponding expression for Im�GG assumes the form
 

2q4

�
Im�GG � 1� 12:4167as � �104:905	 36:257�a2

s

� �886:037	 1098:48�a3
s ; (13)

where we have underlined the contributions coming from
analytic continuation. Thus, the present calculation con-
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firms the pattern first observed on the example of the scalar
correlator in work [21]: the kinematical �2 terms tend to
neatly cancel the genuine higher order contributions.

We are now in a position to find the O��3
s� term of the K

factor in Eq. (6). To this end, we first multiply C2
1 by

RG�q2 � M2
H�, then eliminate ��6�s ��� in favor of ��nl�s ���

[17,29,30] and, finally, choose the � � MH (to get a
compact expression). The result reads:

 K � 1� 17:9167a0s �
�
156:81	 5:7083 ln

M2
t

M2
H

�
�a0s�

2

�

�
467:68	 122:44 ln

M2
t

M2
H

� 10:94ln2 M
2
t

M2
H

�
�a0s�

3:

(14)

If we also use Mt � 175 GeV, MH � 120 GeV, and
��5�s �MH�=� � 0:0363 we arrive at

 K � 1� 17:9167a0s � 152:5�a0s�
2 � 381:5�a0s�

3

� 1� 0:65038� 0:20095� 0:01825: (15)

Thus, we observe that, unlike the NLO and NNLO cases,
the O��3

s� correction, being by a factor more than ten less
than the previous �2

s one, has quite a moderate size. The
welcome stability of the perturbation theory is also con-
firmed by testing the scale dependence of the K factor. By
changing the scale � from MH=2 to 2MH we find that the
maximal deviation of the K factor from its value at � �
MH decreases from 24% (LO) to 22% (NLO), 10%
(NNLO) and, finally, to only 3% at NNNLO.

Conclusion.—We have computed the N3LO correction
of order �5

s to the H ! gg partial width of the standard-
model Higgs boson with intermediate mass MH < 2Mt.
Our calculation significantly reduces the theoretical uncer-
tainty of the QCD prediction for this important process.
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