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The thermally assisted force-induced desorption of semiflexible polymers from an adhesive surface or
the unzipping of two bound semiflexible polymers by a localized force are investigated. The phase
diagram in the force-temperature plane is calculated both analytically and by Monte Carlo simulations.
Force-induced desorption and unzipping of semiflexible polymers are first order phase transitions. A
characteristic energy barrier for desorption is predicted, which scales with the square root of the polymer
bending rigidity and governs the initial separation process before a plateau of constant separation force is
reached. This leads to activated desorption and unzipping kinetics accessible in single molecule

experiments.
DOI: 10.1103/PhysRevLett.97.058302

Peeling an adhesive fiber from a surface or separating
two adhesive fibers are two basic experimental tests of
elastic and adhesive fiber properties. Over the past decade,
experimental force spectroscopy techniques such as atomic
force microscopy (AFM) and optical or magnetic tweezers
have been developed, which allow us to perform analogous
manipulation experiments on individual polymers with
spatial resolution in the nm range and force resolution in
the pN range [1]. Particularly suited for single polymer
manipulation experiments are large rodlike polymers, e.g.,
biopolymers such as DNA, cytoskeletal filaments, or pro-
tein fibers, dendronized, or charged polymers. These poly-
mers are semiflexible, i.e., governed by their bending
energy with typical persistence lengths in the nm or um
regime. Quantitative analysis of force spectroscopy on
semiflexible polymers requires theoretical models that
take into account the combined effects of external force,
temperature, and polymer bending energy. In this Letter, I
present a theory and simulations for the force-induced
desorption and unzipping of semiflexible polymers.
Force-induced desorption experiments with single semi-
flexible polymers have recently been realized by attaching
adsorbed polyelectrolytes to an AFM tip [2—7]. The most
recent experiments [5—7] give access to the single polymer
force-distance curve. Force-induced desorption is assisted
by thermal fluctuations and, thus, also gives additional
insight into the fundamental problem of polymer adsorp-
tion, which has been studied intensively both analytically
[8—10] and by simulations [11] for semiflexible polymers.

A closely related problem is the unzipping of two semi-
flexible polymers, e.g., the unzipping of stiff protein fibers
[12] or of cytoskeletal filaments or bundles of filaments
[13,14]. The unzipping of DNA [15], where single strands
are modeled as flexible polymers, has been extensively
studied [16—20], and two barrier effects have been re-
ported: (i) Finite DNA can unzip below the critical force
by overcoming a free energy barrier, which is proportional
to its total length [16]. This effect is also present for
unzipping semiflexible polymers, but we will focus on
the limit of long polymers such that the bound state be-
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comes thermodynamically stable below the critical force.
(ii) A free energy barrier arises from the enhanced stiffness
of the double-stranded DNA helix [19]. In this Letter, I
rather focus on the situation where each of the unzipping
polymers is semiflexible, and point out a generic barrier
effect governed by their intrinsic bending rigidity.

I show that the desorption and unzipping of semiflexible
polymers by localized forces are first order transitions and
obtain the full phase diagram in the force-temperature
plane, i.e., the critical force as a function of temperature
both analytically and by Monte Carlo simulations. For
semiflexible polymers, force-induced desorption or unzip-
ping require thermal activation over a characteristic energy
barrier that scales with the square root of the bending
rigidity « and is absent for flexible polymers. This energy
barrier governs the initial separation process before a
plateau of constant desorption or unzipping force is
reached and has important consequences for experiments.
The energy barrier is a generic bending rigidity effect and
gives rise to an enhanced stability against external forces.

Force-induced desorption at zero temperature.—First,
we will focus on force-induced desorption and discuss
the related problem of unzipping in the end. In the absence
of thermal fluctuations (7" = 0), force induced desorption
becomes a classical mechanics problem similar to fracture.
At T =0, polymer excursions parallel to the adhesive
surface are suppressed, and the configuration of a polymer
segment of contour length L. can be parameterized by
tangent angles ¢(s) with respect to the adhesive surface,
where s is the arc length (0 < s < L,), see Fig. 1(a). The
bending energy is given by E, = (k/2) fé" ds(d,¢)?,
where « is the bending rigidity. The adsorption energy is
E,= [ é“ dsV[z(s)], where z(s) is the distance of polymer
segments from the adsorbing surface at z = 0 and V(z) is a
generic square well adhesion potential of small range ¢
with V(z) = W <0 for z<¥, V(z) =0 for z> ¢, and
V(z) =c0 for z<0 due to the hard wall. For
van der Waals forces or screened electrostatic interactions
the potential range € is comparable to the polymer thick-
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FIG. 1.

(a) Force-induced desorption and unzipping of semiflexible polymers (inset); f, is the desorbing (unzipping) force and 4 the

height (separation) at the end point. (b) Phase diagrams in the plane of desorbing force f; and temperature 7" from Monte Carlo
simulations for bending rigidities « = 10 (triangles) and « = 5 (squares), adsorption potential range € = 0.1, and contour length
L. = 100 (all lengths in units of As, energies in units of the adhesion energy |W|As = 1; lines are guides to the eye). Inset shows the
reentrance region at low temperatures. (c),(d) Free energy landscapes AG(h) as a function of the height & for k = 10 and forces and
temperatures as indicated by diamonds in the phase diagram (b); (c) at T = 0 according to the analytical result, see Eq. (1); (d) for
fa = 0.5 from Monte Carlo simulations in agreement with Egs. (4) and (5). In the desorbed phase AG(h) exhibits an energy barrier.

ness or the Debye-Hiickel screening length, respectively.
For the discussion at T = 0, we consider a contact poten-
tial, i.e., the limit of small €. In the absence of a desorbing
force the polymer lies flat on the adhesive surface [¢(s) =
0 for all s] gaining an energy —|W|L,. The semiflexible
polymer is peeled from the adhesive surface by a localized
desorbing force f; that is applied in the z direction at the
end point s = 0. Under the influence of the force, a poly-
mer segment 0 < s < L, desorbs, which costs a potential
energy |W|L,. In order to map out the energy landscape of
the desorption process, we consider a constrained equilib-
rium and minimize the sum of bending and potential
energy of the polymer, E = |W|(L; — L.) + E,, under
the constraint of a fixed height & = | OL“’ ds sing(s) of the
polymer end at s = 0. Minimizing with respect to L, gives
the transversality condition a,¢(L,;) = —(2|W|/k)'/? =
1/R., which determines the contact curvature radius R,
[21]; the boundary conditions are ¢(L,;) =0 and
9,4 (0) = 0 corresponding to a free tangent. Solving the
resulting shape equation, we find the scaling form AE(h) =
E(h) — EQ0) = (k|W)'/2 F(h/R,,) for the total energy,
which has the limits

27/43=1/21/2 1 /4|y |3/4
IWIh + 4(v2 = DR, ]

for h < R,

.
for h > R, M

AE(h) ~ {

The result (1) can be corroborated by a scaling argument
starting from the estimate AE(h, L) ~ xh*/L3 + |W|L,
of the energy cost to desorb a segment of length L,. For
h < R, energy minimization with respect to the des-
orbed length L, gives L, ~ h'/?k'/4|W|~1/4 and an energy
cost & h'/2 as in (1). For h > R, essentially the whole
desorbed length L, is lifted straight and perpendicular to
the substrate except for a curved segment of length ~R,
around the contact point, which leads to L; = h + O(R,,)
and an energy cost o h as in (1).

Including the energy gain for a constant desorbing force
f4, we obtain the energy landscape AG(h) = AE(h) —
fqh at T =0 as a function the height &, see Fig. 1(c).

The equilibrium height minimizes AG(%), and we find a
first order desorption transition from ~ = 0 to infinite A
above the critical force fy;. = |W|. For all force values
f4 > |W|, there remains a local minimum at # = 0 corre-
sponding to the firmly adsorbed state, which is separated
by an energy barrier AG, from the desorbed equilibrium
state. The energy barrier is given by AG, =
121 2\W 32 /3f, for all f,>|W|, ie., it decays as
1/f, and scales with «'/2 and, hence, is a consequence
of the bending rigidity of the polymer. The scaling behav-
ior of AG,, also follows from equating the energy cost
AE(h) o h'/2k!/4|W|3/* and the gain f,h. Because of the
energy barrier, force-induced desorption requires thermal
activation or an h-dependent force f,;(h) = 9,AE(h),
which diverges as A ~!/2 for small h.

Thermal desorption.—In the absence of a desorbing
force (f; = 0), a semiflexible polymer can undergo ther-
mal desorption, which we describe using a model connect-
ing length scales below and above the persistence length
L, =2«/T (kg = 1) [22]. At the desorption transition, the
correlation length & diverges. For & <L,, we apply
results for a weakly bent semiflexible polymer [10],
whereas we use standard results for the adsorption of
flexible Gaussian polymers in combination with an effec-
tive adsorption potential for £ > L. In the latter flexible
regime, desorbed segments of typical length &) decay into
uncorrelated persistent Kuhn segments of length L ,. The
strength of the effective renormalized adsorption potential
for these Kuhn segments is given by the free energy of
adsorption f, g of a semiflexible segment. This construc-
tion connects the semiflexible and flexible regime. Using
this approach [22], we find the critical potential strength
for desorption, W, =~ —@(T/€2/3L},/3)[1 —g—:(€/L1,)2/3],
and a free energy of adsorption

3(W—=W,)?L,/2T for|W—-W.|<T/L,

=~ s 2
/vl {IfW,SFI~|W—Wc| forlw—wl=7/L," ?

which is related to the correlation length by |fy| = T/&.
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The first line in (2) is the free energy of adsorption in the
flexible regime; the second line is the free energy of
adsorption in the semiflexible regime, which holds for
|fwl = T/L, or outside a window of adhesion strengths
of width 7'/L,, around the critical value W..

Phase diagram.—In the presence of thermal fluctuations
the free energy of adsorption fyy replaces the bare potential
strength W and the free energy per length g(f,;) of a
thermally fluctuating, stretched semiflexible polymer re-
places the force —f,. For small stretching forces f; <
T/L p» the polymer is effectively flexible and entropic elas-
ticity gives g(f,;) = — f3L /6T, whereas for strong stretch-
ing f;>T/L,, we have g(fy)=—fs+QTfq/L,)"?,
where the square root contribution is typical for semiflex-
ible behavior [23]. The polymer desorbs if the stretching
free energy g(f,) compensates for the free energy cost of
desorption, i.e., for [g(f;)| > |fw|. This gives a first order
force-induced desorption transition (similar to DNA un-
zipping [17,20], where the single strands are flexible poly-
mers), at a critical force

6T fwl/L,)"? for |fwl < 2T/L,
\fwl + QTIfwl/L,)V?  for |fwl>2T/L,
3)

and, thus, the phase boundary of the adsorbed phase in the
f4-IW| or f,-T plane. The line of first order force-induced
desorption transitions ends in the critical point of thermal
desorption at zero force.

The results for the phase diagram were confirmed by
Monte Carlo (MC) simulations of a discretized semiflexi-
ble polymer consisting of N = L./As beads with heights
z; (i.e., h = zy) and N — 1 connecting segments of length
As with unit tangent vectors t; using the Hamiltonian
H =E, +3S¥ AsV(z;) — fsh, where Ej, = (x/2)X
SNt — t;)?/As is the bending energy. The MC sim-
ulation uses the Metropolis algorithm with a combination
of local displacement, pivot, and reptation moves. The re-
sulting MC phase diagrams in the f,-T plane are shown in
Fig. 1(b). The analytical result (3) correctly describes three
main features of the simulation results: (i) A characteristic
square-root dependence f,. ~ | fw sel'/? ~ |T — T,|'/?
close to the thermal desorption transition typical for flex-
ible behavior. (ii) A broad [linear regime f;.=
|fwl ~|T — T.| at lower temperatures, which is absent
for flexible polymers and due to the bending rigidity ef-
fects. (iii) At low temperatures T < |W[¢*/3LY>, we find
fae~ W =T3/¢233 + T|W|'/2/ k"2, which gives
a small reentrant region of the desorbed phase because
thermal fluctuations weaken the adhesion strength less than
the pulling force. Such ““cold desorption or unzipping’’ has
been reported previously for flexible polymers like DNA
[20,24].

Free energy landscape.—The energy landscape of the
desorption process can be mapped by calculating the con-
strained free energy AF(h) = —T1In[Z(h)/Z(0)], where

fae ”{

Z(h) is the restricted partition sum over all polymer con-
figurations with a given height & of the end point. The
transfer matrix treatment of the weakly bent semiflexible
polymer [10,22] gives the constrained free energy

T (hy 2"*
AF(h) = _E ln<L—> +mhl/2Kl/4|fwl3/4 (4)
p

for the semiflexible regime |fy| = T/L,,. This is the exact
generalization of the 7 = 0 result (1) for small £ to finite
temperatures, where the free energy of adsorption of a
semiflexible polymer fy, replaces the bare contact poten-
tial W and a logarithmic entropic repulsion from the hard
wall occurs. For large 4, the free energy cost (4) is always
exceeded by the linear energy gain — f;h, which suggests
the absence of a phase transition and a desorption insta-
bility even for small forces f,; [9].

However, the weak bending approximation breaks down
upon increasing A if typical tangent angles /L, > 1 be-
come large for & > R., = («/2|fwl)"/2. Then the whole
desorbed tail of length L, becomes lifted perpendicular to
the substrate except for a curved segment of length ~R,,
ie, Ly = h+ O(R,,). In this limit the full free energy
AG(h) = AF(h) — hf, in the presence of the desorbing
force can be written as

AG(h) = hllfwl + g(fa)] + cReolfwl, (5)

where ¢ is a numerical constant [c = 4(+2 — 1) at T = 0,
see (1)]. Equation (5) is in accordance with our above free
energy criterion |g(f,)| = |fwl for the desorption
transition.

Therefore, also for T > 0, the free energy landscape
AG(h) = AF(h) — hf,, as given by (4) for h < R, and
(5) for h > R, exhibits a barrier for f; > f,., which
arises from the bending rigidity although the microscopic
adhesion potential is purely attractive. In the MC simula-
tion, AG(h) can be calculated from the logarithm of the
end point distribution function, which clearly confirms the
existence of a barrier, see Fig. 1(c). In the semiflexible
regime for |fy| = T/L,, we find an energy barrier AG), ~
&2 fy|*/?/ £, for all forces f,; > f,. = |fwl. The barrier
scales with «'/2 and decreases as 1/f, starting from
AG), ~ (k|fw|)'/2. The barrier is attained for a height i ~
AG,/f4, which approaches h ~ R, for f; = |fwl. In the
semiflexible regime |fy| = T/L,, we have AG, = T and
R, = L,. Upon entering the flexible regime the barrier
becomes smaller than the thermal energy T and can thus be
overcome quasispontaneously by thermal activation; the
contact radius becomes larger than the Kuhn segment
length L .

Desorption kinetics in experiments.—The existence of a
barrier in the semiflexible regime |fy|= T/L, has im-
portant consequences for single polymer desorption ex-
periments. In equilibrium, the necessary desorption force
fa(h) = 0,AF(h) ~ h= 12k 4 £, |>/* diverges for small
h, before a plateau fy = f4. = |fwl is reached at large
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h. This is indeed observed in experimental force-distance
curves [4-7]. Measurements of the shape of the /~!/2
divergence together with the plateau force f,. allow us
to determine the bending rigidity « and the free energy of
adsorption fy, of the semiflexible polymer using the results
(3) and (4). If the desorption experiment is performed out
of equilibrium at constant desorption force larger than the
threshold force, f, > f, ., the energy barrier AG,, has to be
overcome by thermal activation with an Arrhenius-type
desorption rate k;~ 7 le ACw/T ~ r=1e=fo/fa where
fo = Ly*fwl¥?/TV/? is a characteristic force and 7 a
microscopic time scale of the polymer dynamics. This
has a strong influence on the kinetics of initial desorption.
The force dependence of k; ~ 1/f,; is qualitatively differ-
ent from other thermally activated single molecule pro-
cesses such as bond dissociation [25]. The probability P of
finding the polymer still adsorbed at time ¢ fulfills dP/dt =
—k4P. For a constant force f, this simply gives P(r) =
e~ka! Also for a time-ramped desorption force f,(t) = r t
with a sufficiently slow constant loading rate r; < fo/7
the dynamics is thermally activated, and we find * ~
(fo/ra)/ In(fo/ry7) and f3; ~ r,t* for the most frequent
time and force for initial desorption, respectively [22].
Because f}; ~ fo = | fw| initial desorption of a semiflexi-
ble polymer requires larger forces than the critical force
f de = |f Wl'

Unzipping.—The unzipping of two bound semiflexible
polymers by a force f, pulling apart the polymer ends [see
Fig. 1(a)] can be studied in the same way as force-induced
desorption. The component f; - z of the three-dimensional
polymer separation vector z is the analogue of the height
coordinate z for desorption. The systems differ in the
attractive potential which is a function of the absolute value
|z|, V = V(|zl|), for unzipping. Apart from numerical pre-
factors, our main results (1)—(5) remain unchanged.

For the unzipping (or desorption) of single cytoskeletal
filaments or bundles of filaments [12—14] typical persis-
tence lengths are L, ~ 100 um. Cross-linker-mediated
adhesion [26] gives rise to typical potentials strengths of
the order of |fy|~|W|~10"% T/nm > T/L, corre-
sponding to cross-linker energies of 7" and spacings along
the filament of the order of 100 nm. This leads to f,;. =
| fw| ~ 4 X 1072 pN, curvature radii R,, ~2 um, and a
typical force scale for the initial unzipping process of f ~
2 pN, much larger than f, .

Conclusion.—In summary, I found the phase diagram
for force-induced desorption of semiflexible polymers and
predict the existence of a characteristic energy barrier
which is a consequence of the bending rigidity and absent
for flexible polymers. The results for the phase diagram
and the energy barrier are confirmed by Monte Carlo simu-
lations. The energy barrier gives rise to activated desorp-
tion or unzipping kinetics and leads to an enhanced
dynamic stability of the bound state of stiff adhesive
polymers or fibers under force. This effect plays a role
for biological polymers under force, e.g., in DNA, protein,

or filament unzipping and desorption as well as for numer-
ous materials science applications ranging from the de-
lamination of thin sheets to the peeling of adhesive hairs,
e.g., wet hair [27]. The results can also shed new light on
the zipping or adsorption dynamics of semiflexible fila-
ments, which plays an important role in cytoskeletal net-
works [13,14].

I thank Reinhard Lipowsky for stimulating discussions.
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