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Aging phenomena in complex systems have been used as an important tool to investigate the physics of
complexity. In particular, aging effects in spin glasses, measured using the thermoremanent magnetization
decays, have been instrumental as a probe of complex equilibrium and nonequilibrium dynamics. In this
Letter, we show that aging found in spin glass materials has a finite lifetime. After the aging part of the
decay has ended, we find a post-aging decay which is apparently logarithmic in nature. This decay is
independent of the waiting time and part of the same mechanism that produces aging.
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Physical aging effects are a very interesting and intrinsic
property of many types of complex materials [1], including
polymers, colloidal gels, molecular glasses, spin glasses,
and glass systems. An important and open question in the
study of aging dynamics concerns the temporal extent of
aging dynamics. To date, only speculation on this issue
exists, and descriptions include aging dynamics extending
to geological time scales [2] or infinite times [3]. By
probing the very long time epoch of spin glass thermor-
emanent magnetization (TRM) decays, we experimentally
address these questions. The answers have broad conse-
quences for the limiting structure of the phase space as well
as limitations on the configuration space.

The classic measurement of aging effects in spin glasses
is the thermoremnant or complementary zero field cooled
magnetization decay measurements. In the TRM experi-
ments, the sample is cooled, in a small constant magnetic
field, through its transition temperature, to a measuring
temperature 7, <T,. After waiting a time 7, in the
magnetic field, the field is rapidly removed, and the con-
sequent magnetization decay of the sample measured. The
decay is long lived and strongly dependent on the waiting
time. The dependence of the magnetization decays on z,, is
called aging. Recently, the authors have observed [4] that,
for a spin glass cooled sufficiently rapidly to a particu-
lar measuring temperature, the magnetization decays
scale as a function of #/t,. The short effective waiting
times (=19 s) achieved opened the possibility of making
measurements in time regimes much greater than the wait-
ing time, t > t,,.

While aging has been the primary focus of TRM mea-
surements, it is not the only contribution to the TRM decay.
Current belief [5-7] is that the full magnetization decay
can be described by a power law plus an aging term. In this
study, we show that there exists another part of the decay
which is independent of the waiting time and occurs in the
time regime ¢ >> f¢,,. This is a new region of the decay and
is not related to previous discussions of > 1, [8,9].
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Analysis of this long time regime suggests that it is inde-
pendent of the waiting time and is not a continuation of the
initial stationary (power law) term.

All measurements in this work were performed on a
Cup94Mny o6 alloy that has a transition temperature T, =
31.5 K. The sample has been the focus of many previous
studies and as such has been well-characterized [10].

We report very long time TRM decay measurements
(10° s) for very short effective waiting times (7 s < ££ff <
110 s) at a temperature of 0.83T,. The decays were ob-
tained using identical fast cooling protocols with a small
additional waiting time added before the magnetic field is
shut off. It is this small additional waiting time that
changes the age of the curves in Fig. 1(a). A slightly dif-
ferent protocol was employed to obtain the £ = 7 s de-
cay. The sample was cooled at a faster rate from a slightly
higher temperature (than the previously described mea-
surements), and the temperature bottoms out closer to the
measuring temperature. The ages (effective waiting time)
of the individual curves were determined from the peak in
the relaxation curve [S(r) = — £ dM/dIn(?)] plot shown in
the inset in Fig. 1(a). It can be observed that, as the effec-
tive waiting time increases, portions of the curves separate.
We plot the difference between the 7 s waiting time curve
and the longer waiting time curves in Fig. 1(b). When the
decay curves overlap, the difference in Fig. 1(b) goes to
zero. We observe for these short effective waiting times
that the decays overlap each other at very long measuring
times. It should be pointed out that the most accurate data
point, in terms of an absolute value, is the data point at
100000 s. It is with respect to this point that we define our
baseline. Therefore, the very long time portions of the
decays are the region in which we have the most confi-
dence. The data at shorter times are more subject to sources
of error including “wobbles” over long time scales (pos-
sibly due to small temperature fluctuations <5 mK).

Since all of the decay curves either follow or approach
this long time decay, we conclude that it is independent of
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FIG. 1. (a) Decay curves for effective waiting times of 7,17.5,
25, 27, 35, and 44 seconds. In the inset, the S(¢)’s for each curve
used to determine the effective waiting time. (b) The subtraction
of the £ff =75 from the other curves, AM = M(t,t,) —
Mt =75), for t, = 17.5 (®), 25 (V), 27 (A), 35 (e),
and 44 s (W). It can be seen that the M(z,, = 17 s) curve begins
to overlap M(z,, = 7 s) at approximately 6000 s. The inset shows
the S(¢) function of the 7 s curve. The curve becomes horizontal
at t ~ 103 s, indicating a crossover to logarithmic behavior.

the waiting time and, hence, distinct from the aging re-
gime. We do not expect the curves to scale as (/t,,)* for
two reasons. (1) The initial state distribution in these short
“waiting time’’ measurements are dominated by the cool-
ing process [a very different mechanism than the isother-
mal evolution of states envisioned during the waiting time
for which (z/t,,)* is generally applied]. In a recent varia-
tion on the real space droplet model, Jonsson and
Takayama [11] proposed a two-step aging process where
short-range-ordered clusters are thermally blocked and
their size depends on the cooling rate. When the cooling
is halted at T below T, the clusters, now under the influ-
ence of the stiffness energy, grow and reach a particular
size in waiting time f,,. When the field is shut off, there
exist two typical length scales and, hence, a two-step aging
process. (2) At long times, the overlap of curves of differ-
ent waiting times is contraindicative to scaling.

The t,, = 44 and 110 s curves do not overlap the shorter
waiting time curves in the 10° s of measuring time,

although the 44 s curve approaches the overlap at just
over 103 s. Extrapolating the t,, = 110 s curve, we find
that it approaches the post-aging decay at approximately
107 s.

It therefore appears that the aging effect is finite in time
extent, and the time at which it ends is dependent on the
waiting time. At long enough time scales, the aging com-
ponent of the decay gives way to a long time post-aging
magnetization decay that is independent of the waiting
time. To determine the form of the post-aging decay, we
can examine the overlap region (6000—100 000 s) between
the 7 and 17.5 s decay curves. This region includes ap-
proximately 25 000 measured points. We find that we can
fit this region to a power law, a stretched exponential, and a
logarithmic function. The fitting functions [F(¢)] are eval-
uated by minimizing the reduced chi-square value, y% =
(M(t) — F(t))>/N (N is the number of points) within an
ORIGIN™ plotting program. The stretched exponential
function with optimized exponent produces the worst fit
(of the three fitting functions) with y*> = 5.8 X 10~7. The
power law, with an optimized exponent, produces a fitting
with y?> = 7.0 X 1078, while the logarithm produces the
best fit with y> = 1.2 X 1078, The S(¢) function for the 7 s
curve is plotted in the inset in Fig. 1(b). A horizontal line
on this plot corresponds to a logarithmic decay.

In the following discussion, we will show that (1) the
post-aging decay is a new, previously undetected magne-
tization decay; (2) the post-aging decay is intrinsically
related to the same mechanisms that give the aging effects
in this system; and (3) the decay is related to the initial state
set up by the cooling procedure.

(1) The logarithmic decay observed in Fig. 1 is the first
observation of the post-aging decay. However, there are at
least two previously discovered magnetization decay com-
ponents which, at first glance, may be responsible for this
long term decay. These include the short time stationary
decay which has a power law form [5] and the long time
logarithmic decay of the field cooled magnetization [12].
Both of these decay mechanisms appear to be independent
of the aging effects. The power law decay is much too
small at the long times under consideration to account for
the large long time decay. Our measurements of the loga-
rithmic decay of the field cooled magnetization in the
Cug 94Mny o6 sample give a coefficient 30 times less than
the post-aging coefficient. These significant differences
alone suggest that these decays are not directly responsible
for the post-aging logarithmic decay.

(2) We now address the question as to whether the long
time, post-aging decay is an independent contribution to
the decay or an intrinsic part of the same mechanism that
produced the aging. In Fig. 1, it can be observed that the
onset of the post-aging decay is strongly dependent on the
waiting time, varying from approximately 6000 to
100000 s for waiting times ranging from 19 to 44 s. The
initial observed value of the magnetization at the onset of
the post-aging decay also decreases.
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If the post-aging decay were independent of the aging
decay, then we would expect the post-aging decay to be an
additive term, or possibly multiplicative, to the aging de-
cay. In this case, we would expect that subtraction or
division of the post-aging decay from the aging term would
improve scaling. Subtraction or division of any of the
fitting functions from a complete set of the aging decays
(¢,, = 50-10000 s) produces sets of curves that no longer
scale as #/1,,. In fact, scaling utterly fails, for the subtracted
or divided data, using any of the standard scaling tech-
niques [13]. Unless we are to abandon the concept that the
aging decays scale as t/1,,, or that the decays scale at all,
we are led to the conclusion that this long time decay is not
simply an additive or multiplicative term like the short time
stationary decay. This scaling analysis implies that this
long time post-aging decay is intrinsically related to the
same mechanism responsible for the aging process and is
the decay due to this mechanism, after the aging compo-
nent ends.

(3) Isothermal remanent magnetization (IRM) experi-
ments on the Cuy¢4Mng o6 sample show no evidence of a
post-aging decay. Using the principle of superposition, it
has been shown [14] that the IRM decay for a pulse time z,,
is essentially the difference between the TRM with waiting
time ¢,, and the magnetization decay set up as a result of the
cooling process. Since the IRM has no long time post-
aging decay, we can conclude that the post-aging decay
comes from the cooling process.

In a previous Letter [4], we have shown that the effects
of even short cooling times can produce state occupations
of large barrier states corresponding to long time dynam-
ics. In this Letter, we have shown that the post-aging
logarithmic decay is formed out of the cooling process.
Using a variety of initial state distributions, we have probed
the spin glass barrier model (SGBM) [15] and find a very
interesting result in the case of a uniform initial distribu-
tion. A post-aging logarithmic decay is observed which
satisfies many of the physical properties we have observed
in the experimental data. All simulations were performed
on a 600 barrier system with a branching ratio r = 1.03
and minimum barrier Ay = 0.1. Figure 2 shows the TRM
decays for a set of four different initial distributions within
the SGBM. The initial distribution was modeled as a
weighted point at the origin (delta function) and a uniform
distribution over all barriers. The total area under the
distribution was normalized to one. To understand the
logarithmic decay, observed in the barrier model, we
have performed further analysis on the decay dynamics
from individual wells located between two arbitrary, but
successive, barriers. We find that decay from an individual
well (1) begins at a time approximately equal to the time
required for Boltzmann hopping over the smaller of the
two barriers which bracket the well and (2) is power law in
nature. The logarithmic nature is a direct consequence of
the fact that successive wells are separated from each other
by linearly growing barriers. The onset of decays from
successive wells are therefore separated by a constant

Barrier Model Simulations
Various Valucs of Delta

Decay

Uniform Distribution

0.6

Decay

0.4

0.2+

\ »
10° 10" 10* 10710 10° 10 10®

time steps

0.0+,
10° 10" 10* 10”10 10™ 10™ 10®

time steps

FIG. 2. Simulations with the barrier model for various initial
conditions. The total initial distribution is normalized to 1. &
states begin evolution from the origin, while 1 — § states are
initially distributed uniformly over all other barriers.

amount on a log time scale. This produces a cascading
effect on a course grain scale (small number of total
barriers) evolving into a smooth logarithmic decay as the
time distance between barriers approaches the continuum
limit (large number of total barriers). In the barrier model,
the time at which the log term goes to zero (i.e., the
maximum aging time) determines the maximum barrier
height within the system.

An initial uniform distribution within the SGBM arises
quite naturally within the multivalleyed free energy land-
scape of the hierarchical picture. As a spin glass sample is
cooled from the paramagnetic state to the transition tem-
perature, barriers begin to grow. Lowering the temperature
below the transition temperature, a system with many
energy minima is formed, and, as a particular temperature
(for example, the measuring temperature) is approached,
there is no a priori reason for the system to choose any
particular minimum. This leads to a random occupation
probability for occupation of any particular minimum. Our
sample is approximately 1-2 mm? in size. There is strong
evidence from multilayer film experiments [16] and also
from the nonlinear susceptibility [17] that in bulk samples
of this material there are correlated regions within the
samples on the order of 100—500 nm. This implies (assum-
ing nonoverlapping correlated regions and reasonable
space filling) that within our sample we have between
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FIG. 3. Logarithmic fitting to the long time post-aging decay
for various temperatures. Comparable (¢ ~ 20 s) decay curves
are used for fitting a log decay.

10°-10'2 correlated regions. Since bulk measurements are
an average over all correlated regions, the random single
particle distribution leads to a uniform distribution over the
averaged free energy landscape. Using the argument above
in the barrier model, as it exists, a uniform distribution
occurs in the case of a branching ratio r = 1. Recent
simulations and calculations [18] have shown that, in the
limit of large numbers of barriers, the barrier model
branching ratio approaches a value of one. Following the
results obtained from the barrier model, we have fit loga-
rithmic best fit functions to the post-aging decay for several
reduced temperatures in Fig. 3. While extrapolations of the
log fit are clearly highly speculative, we include it, as it is
suggested by the barrier model and may provide an indi-
cation of the ultimate time scales in the problem. The
extrapolated logarithmic post-aging decays go to zero on
finite time scales ranging from approximately a year at
0.95T PR the highest reduced temperature measured, to
many times the age of the Universe for the lowest reduced
temperature measured 0.387,. Of course, it is also possible
that the post-aging term is only an intermediate mechanism
and that other decay mechanisms are possible at much

longer times. We, however, have no evidence for other
very long time mechanisms.

While this simple picture may only suggest a direction
for understanding “post-aging,” it is nonetheless clear that
the post-aging regime is an important and large component
of the thermoremanent magnetization decay in spin
glasses. As such, a first principles understanding of the
effect is clearly desirable.
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