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We study the steady-state low-temperature dynamics of an elastic line in a disordered medium below
the depinning threshold. Analogously to the equilibrium dynamics, in the limit T ! 0, the steady state is
dominated by a single configuration which is occupied with probability 1. We develop an exact algorithm
to target this dominant configuration and to analyze its geometrical properties as a function of the driving
force. The roughness exponent of the line at large scales is identical to the one at depinning. No length
scale diverges in the steady-state regime as the depinning threshold is approached from below. We do find
a divergent length, but it is associated only with the transient relaxation between metastable states.
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The physics of elastic systems in disordered media has
been the focus of intense theoretical and experimental
studies. A continuing challenge has been to understand
their response to an applied external force f. Such a situ-
ation is relevant for a large number of experimental driven
systems ranging from periodic ones, such as vortex lattices
[1] and charge density waves [2], to interfaces, such as
domain walls in magnetic [3,4] or ferroelectric [5,6] ma-
terials, contact lines [7], and crack propagation [8].

A crucial feature of the zero-temperature motion of
these systems is the existence of a threshold force fc below
which the system is pinned. For f > fc the system under-
goes a depinning transition [9–13] and moves with a non-
zero average velocity. Fisher first viewed the depin-
ning transition as a critical phenomenon [14]. A key idea
is that the slow motion close to fc proceeds by avalanches
of size �, which diverge as fc is approached. Indeed,
theoretical and numerical works at zero temperature have
shown that for f ! f�c , the correlation length diverges as
�� �f� fc�

��dep . The exponent �dep is related to the
roughness exponent �dep of the system pinned at fc, via
the scaling relation �dep � 1=�2� �dep�. The length scale �
identifies both the typical size of avalanches and the cross-
over in the roughness behavior [13]. For length scales
below �, the roughness is described by the exponent �dep,
while for scales larger than �, the velocity introduces a
time dependent noise. In this regime, for interfaces,
quenched disorder becomes equivalent to an effective tem-
perature, and the roughness exponent is equal to the ther-
mal one. The interpretation of depinning as a critical
phenomenon suggests that a similar diverging length scale
would also exists below fc. Indeed, in standard critical
phenomena, for length scales smaller than the correlation
length the system is critical and crosses over beyond this
correlation length to the broken symmetry phase on one
side of the transition and to the symmetric phase on the
other side. An important question is thus whether an
equivalent length is observable in the limit f ! f�c .

Answering such a question is not an easy task since
below fc the steady-state velocity vanishes in the long-
time limit at zero temperature. This makes methods such
as molecular dynamics simulations ill suited. Some
authors [15–17] have therefore studied the relaxation of a
given initial configuration towards a final zero-velocity
state. This analysis allows us to identify a dynamical scal-
ing characterized by a single correlation length diverg-
ing with an exponent �dep as fc is approached. However,
it has remained unclear how such T � 0 transients re-
late to the steady-state motion in the large time limit at
small but finite temperatures. Below fc, it is thus prefer-
able to keep the temperature finite, but direct Langevin
dynamics simulations are powerless to clarify whether
the limit f ! f�c is also characterized by a divergent
length scale. An analytical tool for addressing this issue
is the functional renormalization group (FRG). This
method allows one to study, at finite temperature, the
slow creep motion [18–21] taking place for f� fc. In
the creep regime, scaling arguments rely on the physical
properties of the system at equilibrium (f � 0). This phe-
nomenological approach suggests that, for f� fc, the
macroscopic forward motion is produced by activated
jumps with typical size �T � f

��eq . The exponent �eq

can be related to the roughness by the same scaling rela-
tion, �eq � 1=�2� �eq�, but with �eq the equilibrium
roughness exponent. The FRG analysis [20] shows that
�T plays the role of crossover length between two rough-
ness regimes: on length scales below �T , the roughness is
described by the exponent �eq, while for scales larger than
�T it is described by the exponent �dep. This regime crosses
over, for interfaces, to a pure thermal-like behavior at very
large length scales due to the finiteness of the velocity for
any nonzero temperature. This FRG finding is thus at
variance with the interpretation of the depinning transition
as a standard critical phenomenon, since it shows that the
roughness �dep appears at large length scales and not at
short ones.
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In order to address the question of the behavior below
threshold, it is interesting to consider the small-
temperature limit without, however, going all the way to
T � 0, so that steady-state motion still exists. This limit is
analogous to the T ! 0 limit for the dynamics of a system
at thermal equilibrium, where the Boltzmann weights im-
pose a ground state occupation with probability 1.
Occupation probabilities also exist for the steady-state
dynamics in a finite system, but they are more difficult to
compute. The T ! 0 limit of this dynamical regime is thus
described by a single dominant configuration, occupied
with probability 1. This is particularly transparent for a
particle hopping on a one-dimensional ring [22,23].

In this Letter, we construct this dominant configuration
using a novel exact algorithm. We analyze its geometrical
properties for driving forces between the equilibrium and
the depinning threshold. We find, in agreement with the
FRG scenario for f� fc, that the depinning roughness
exponent describes the geometry of the line at large length
scales for all forces. This result is inconsistent with the
existence of a divergent correlation length for f ! f�c in
the steady-state regime. A divergent length scale exists
only in the transient dynamics of relaxation to a metastable
state. The conclusions of our analysis are summarized in
the dynamical phase diagram of Fig. 1.

Let us consider an elastic line on a two-dimensional
discrete L�M lattice with periodic boundary conditions
in both directions (see Fig. 2). The force f drives the line
around the system in the direction of M. We define ele-
mentary moves as in Ref. [24], allowing for simultaneous
motion of several sites. This avoids problems of single-site
dynamics proper to the elastic string model. Using this
dynamics, any configuration relaxes to the nearest meta-
stable configuration, a local minimum of the energy

 E �
X

i

1

2
�hi�1 � hi�2 � fhi � V�i; hi�: (1)

The first term in this equation takes into account the short-
range elastic energy and V�i; hi� is the quenched disorder,
which we take to be Gaussian and uncorrelated. The var-
iables h gives the height of the line, as a function of i (see
Fig. 2). The equilibrium ground state (at f � 0) is easily
found with a transfer matrix approach [25]. The sample-
dependent critical force fc and the zero-temperature criti-
cal configuration at fc are also readily determined [24]
exploiting the analytic structure of the zero-temperature
dynamics of a d-dimensional elastic interface embedded in
a d� 1 random medium. Two properties are particularly
useful for numerical algorithms: the ‘‘no-passing’’ prop-
erty assures that, during its motion, an elastic interface can
never miss any pinned configuration; the ‘‘no-return’’
property, which holds after a finite initial time, states that
only forward motion takes place [26]. At nonzero tempera-
tures, these rules obviously cease to hold. The motion is
dominated by the activation time spent to overcome the
energy barriers. The evaluation of these barriers is an NP-
complete problem [27] and the algorithms employed at the
equilibrium are exponential in the size of the system. In the
following we show that, in the T ! 0 limit, properties
analogous to the no-passing rule govern the time evolution
of such systems. These properties allow one to capture the
steady-state dynamics below the depinning threshold
within a reasonable computation time.

For an elastic line pinned in a metastable configuration
�, the path taken at low temperature from � to another
metastable configuration with lower energy � is the one
with the lowest activation energy Eesc

� . The time spent in �
thus corresponds to the Arrhenius activation energy Eesc

� .
Once at �, the probability to return to � is negligible if
T ! 0. This procedure defines deterministic coarse-
grained dynamics between metastable states. Two theo-
rems can be proved for this dynamics, whenever the stan-
dard no-passing rule is valid: (i) If there is no configuration
which lowers the energy of � in the backward direction,
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FIG. 1. Dynamical phase diagram. The steady-state properties
of the elastic string at T ! 0 are determined by Lopt (solid
symbols) and �. They separate regions characterized by the
equilibrium exponent, the depinning exponent (gray region),
and the thermal one. The divergent length Lrelax (open symbols)
is associated only with transient dynamics. Lines are guides to
the eye.
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FIG. 2. Low-temperature dynamics of the driven elastic string
below the depinning threshold: the optimal path to escape from a
given metastable configuration � pass through a saddle configu-
ration � that can relax deterministically to the next metastable
configuration � with E� < E�. Configurations � and � differ on
a length Lopt; � and � differ on a length Lrelax.
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the coarse-grained dynamics starting from � is always
forward directed. (ii) Let � be any metastable configura-
tion escaping into a configuration � with h� 	 h�, and any
�0 configuration such that h�

0
	 h� and having an energy

barrier Eesc
�0 >Eesc

� : all �0 then satisfy h�
0
	 h� [28]. Direct

consequences of these theorems are that the dynamics is
periodic after a single pass of the line around the system,
and that the dominant configuration, the metastable con-
figuration with the largest barrier, is always visited, inde-
pendently of the initial condition. This dominant
metastable configuration is the only statistically relevant
configuration of the T ! 0 steady-state dynamics: Under
the conditions of Arrhenius activation, the system spends
much more time in it than in any other configuration. To
construct the minimal path escaping from the configuration
� (see Fig. 2), we enumerate all configurations dynami-
cally connected to it, increasing gradually the maximum
energy of configurations. This continues until a saddle
configuration � is found which can relax to a metastable
configuration �, with E� < E�. Configurations � and �
differ on a length Lopt; � and � differ on a length Lrelax. A
new path construction starts at configuration �. Several
refinements are implemented [28]. During the construc-
tion, a very large number of configurations are considered,
but only those with energy barriers below Eesc

� need to be
evolved. In our case, the computational cost increases very
rapidly with Lopt, but small values of Lopt can be handled
even for large system sizes L. This is realized in the
physically interesting case close to depinning, and the
computation becomes difficult only for small driving
forces, where the saddle point configuration may be very
different from �. We have considered systems up to L �
128 for forces f * 0:7fc and up to L � 32 for f� 0:2fc.

In the following, we concentrate on the disorder-
averaged geometric properties of the dominant configura-
tion, expressed through the structure factor S�q�, which
gives access to the roughness exponent �:

 S�q� �
��������
X

j

hj exp��iqj�
��������

2
� q��1�2��: (2)

We also analyze the dynamical lengths Lopt and Lrelax

defined above. In Fig. 3(a), we show S�q� for different
forces ranging from f � 0 (equilibrium) to f � fc (depin-
ning). The slope of S�q� in these two limits corresponds to
the critical exponents �eq � 2=3 [29] and �dep � 1:26

0:01 [12], respectively. In between, we find two regimes.
Remarkably, on large length scales (small q), S�q� corre-
sponds to �dep, even at forces well below fc. In Fig. 3(b) we
show that this behavior is size independent up to L � 128
at f � 0:8fc. Only at small scales (large q) is the rough-
ness exponent �eq. This allows us to define a crossover
length which decreases with increasing f, as we can see in
Fig. 3(a). The results of Fig. 3 thus show that there is no
divergent length scale below the depinning threshold in the
steady-state regime, unlike the divergent length scale that
exists above the threshold.

In order to understand the existence of a single charac-
teristic length which does not diverge at fc but separates
the �eq and �dep steady-state regimes, we analyze the
behavior of the dynamical lengths Lopt and Lrelax as a
function of f. The dynamical lengths shown in Fig. 1 are
obtained starting from the dominant configuration and
averaged on 1000 samples. We see that Lopt decreases
with increasing f and saturates to the minimal avalanche
size at fc. Interestingly, Lrelax increases as �fc � f���dep

close to fc and Lrelax � Lopt at low f. This behavior is
controlled by the density of metastable states, which is
very high at low forces and very low near fc. The results of
Fig. 1 lead us thus to identify Lopt with the steady-state
crossover length. The observed divergence in Lrelax has its
origin purely in transient dynamics and has no counterpart
in the steady-state properties. We note that Lrelax can be
related with the divergent length found in [15–17]. Our
simulations lead to the dynamical phase diagram of Fig. 1.
This diagram is expected to hold for d-dimensional mani-
folds in d� 1 dimensions. The steady-state geometrical
properties of the string in the T ! 0 limit are determined
by the two solid lines in Fig. 1: Lopt, associated with the
optimal activated jump needed to escape from the domi-
nant configuration, and �, the typical size of the depinning
avalanche above threshold. Lopt�f� and ��f� separate three
roughness regimes: �eq � 2=3, �dep � 1:26, and �therm �

0:5. The divergent length Lrelax (dashed line) does not
affect steady-state properties: it describes transient pro-
cesses that depend on the distance between successive
metastable states, but it does not describe the properties
of the dominant ones. As indicated in Fig. 1, it is plausible
to connect continuously Lopt with the thermal nucleus size
�T defined for f� fc. However, we are not able to verify
with our data the predicted power law divergence �T �
f��eq . The scenario thus proposed is consistent with the
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FIG. 3. Steady-state structure factor of the line in the T ! 0
limit, averaged on 1000 samples. (a) S�q� for L � 32, M � 92,
and different forces (curves are shifted for clarity). (b) S�q� at
f=fc � 0:8 for L � 16, 32, 64, 128, and M � L�dep .
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FRG prediction [20] of the existence of �dep at scales larger
than �T and inconsistent with the existence of a critical
region extending both below and above fc, as the standard
critical phenomena interpretation would have suggested.

An interesting question is whether the elastic depinning
has a counterpart in a static although nonstandard type of
phase transition. Both pure and disordered systems can
exhibit a critical low-temperature phase at equilibrium,
such as the XY and the 2D random-phase sine-Gordon
[30] models. However, the latter examples display a line
of critical points and temperature-dependent exponents,
while for f < fc the roughness exponent of the string is
force independent. In order to get parameter independent
exponents, one usually needs the existence of an extra
symmetry, as in the Kondo problem [31]. Whether an
analogous counterpart exists for the string is yet unclear,
though. Critical nonequilibrium phases are, on the other
hand, a common (although less understood) phenomena. In
this respect, let us note that depinning at T � 0 is an
absorbing phase transition [32]. From this general view-
point the T ! 0 creep dynamics for 0< f < fc can be
thought as an effective feedback mechanism that keeps a
critical ‘‘activity’’ in the system above the length scale Lopt

[20,21]. Understanding the links of the depinning transi-
tion with other static or dynamic phase transitions is thus a
very appealing challenge.

Although our computational approach strictly holds
only in the T ! 0 limit, it yields the scenario of Fig. 1,
which offers a solid framework for discussing finite tem-
perature effects. At finite temperature the depinning tran-
sition is rounded. Since the velocity is finite for all forces,
the regime with the thermal roughness �therm exists at the
largest length scales [20]. For f < fc we expect two cross-
overs separating the regimes �eq, �dep, and �therm, as we
increase the length scale. For temperature comparable to
the strength of the disorder at the very small length scales
an additional thermal regime appears and crosses over to
�eq or directly to �dep. Such a scenario is in part supported
by recent Langevin dynamics simulations [21], which
show, at small forces, a steady-state motion characterized
by a roughness exponent bigger than �eq at large length
scales and a roughness �therm at the smallest length scales.

Finally, we expect that an experimental verification of
our results is possible using, for instance, imaging tech-
niques for magnetic [3,4] or electric [5,6] domain walls in
thin films: Lopt could be extracted from the analysis of a
spatial correlation function or by measuring the domain
wall speed at low temperatures, since Lopt also controls the
thermally activated motion [28]; Lrelax could be measured
by comparing consecutive (long-lived) metastable states
when f is close to fc, since then Lrelax controls the dis-
tances between successive metastable states.
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