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Previously, we have demonstrated that, on a torus, the Abelian quantum Hall liquid is adiabatically
connected to a charge-density wave as the smaller dimension of the torus is varied. In this work, we extend
this result to the non-Abelian bosonic Hall state. The outcome of these works is the realization that the
paradigms of quantum number fractionalization in one dimension (polyacetylene) and two dimensions
(fractional quantum Hall effect) are, in fact, equivalent.
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Quantum number fractionalization is a subject of con-
siderable interest in condensed matter physics recently.
Two well-known examples where such a phenomenon
occurs are (i) the soliton in a one-dimensional (1D)
charge-density wave [1] and (ii) the quasiparticles in the
fractional quantum Hall effect [2]. Usually, they are re-
garded as distinct mechanisms of charge fractionalization.

In a recent Letter, Seidel et al. have shown that, when
placed on a L1 �1 torus, the � � 1=3 fractional quantum
Hall liquid is adiabatically connected to a period-three
charge-density wave when L1 is varied [3]. In a subsequent
work, the same conclusion was reached independently [4].
Such continuity is very powerful in identifying discrete
quantum numbers, since the latter cannot change during an
adiabatic process. For example, the topological threefold
degeneracy in the large L1=lB limit (lB is the magnetic
length) is adiabatically related to the three charge-density
wave patterns at small L1=lB. Moreover, the charge 1=3
quasiparticles at large L1=lB are evolved from the Su-
Schrieffer domain walls at small L1=lB [3].

The above results are based on a 2D! 1D mapping
discussed in Refs. [5,6]. Specifically, in the Landau gauge,
and after projection to the lowest Landau level, the pseudo-
potential Hamiltonian [7], for which the Laughlin state is
the exact ground state, becomes a center-of-mass position
conserving pair hopping model on a 1D lattice [3,5]. The
torus parameter L1=lB becomes the hopping range. Within
this model, it can be shown that for all nonzero L1=lB there
is an energy gap separating the three degenerate ground
states from the excited states. In addition, each ground state
has a different center-of-mass position and exhibits a non-
zero charge-density wave order as long as L1=lB is finite
[3,8]. Finally, due to the simultaneous conservation of the
center-of-mass position and momentum, all eigenstates are
at least threefold degenerate.

In this Letter, we apply the same mapping to study the
bosonic non-Abelian quantum Hall state at filling factor
� � 1 [9]. Our motivations are as follows. First, there is a
general argument due to Oshikawa [10], which says that, at

filling factor � � p=q, if a system possesses an excitation
gap, then the ground state must be at least q-fold degener-
ate on a (d-dimensional) torus. From this point of view, one
expects that, in the absence of hidden symmetry, the
ground state for a gapped � � 1 system should be non-
degenerate. However, based on analyzing the ground state
wave function, it was shown that the gapped non-Abelian
bosonic Hall state is threefold degenerate on a torus
[11,12]. Second, we are curious whether the adiabatic
connection in the � � 1=3 Abelian quantum Hall state
also holds true for the non-Abelian case.

In the infinite 2D plane, the bosonic Pfaffian state [9]
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is the unique ground state wave function of the following
three-particle pseudopotential Hamiltonian at � � 1:

 H �
X
�ijk�

��zi � zj���zi � zk�: (2)

When the Pfaffian state is generalized to toroidal geometry
[11,12], a threefold degeneracy emerges. As emphasized in
the beginning, unlike the Abelian quantum Hall state, this
degeneracy cannot be attributed to different center-of-mass
quantum numbers.

Following our procedure in Ref. [3], we first establish a
simple picture for this degeneracy by making the smaller
dimension of the torus much smaller than the magnetic
length lB. To this end, we express the Hamiltonian of
Eq. (2) in the Landau gauge basis of the lowest Landau
level of a L1 � L2 torus and obtain H �

P
RQ
y
RQR, where

 QR �
X

m�n�p�3RmodN

f�R�m;R� n; R� p�cmcncp (3)

and f�a; b; c� � �
P
s;t exp����a� sN�2 � �b� tN�2 �

�c� �s� t�N�2�=2�. In the above, m; n; p runs over the
index of the lowest Landau level orbitals. One may identify
each orbital with a site on a 1D ring. The total number of
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lattice sites N is equal to the number of magnetic flux
quanta piercing through the surface of the torus; i.e., N �
L1L2=2�l2B. The operator cn annihilates a boson on the nth
site. Equation (3) describes center-of-mass conserving
triplet hopping. The only parameter � of this
Hamiltonian, � � 2�lB=L1, sets the hopping range.

Symmetry.—The Hamiltonian in Eq. (3) not only com-
mutes with the lattice translation operator T but also com-
mute with the operator

 U � exp
�

2�i=N
X
n

ncyncn

�
: (4)

We identify U as the center-of-mass position operator of
the ring. For filling factor � � p=q, it is simple to prove
that UT � ei2�p=qTU. Thus, for � � 1 the two operators T
and U commute. As the result, we can label any energy
eigenstate by three quantum numbers, i.e., the eigenvalue
with respect to H, U, and T, i.e., jE; u; ti, where
HjE; u; ti � EjE; u; ti, UjE; u; ti � exp�iu�jE; u; ti, and
TjE; u; ti � exp�it�jE; u; ti.

In addition to the above symmetries, Eq. (3) has the
remarkable property that it is ‘‘self-dual’’ under Fourier
transformation [3]. That is, when the model is reexpressed
in momentum space, which is a lattice of discrete momenta
2�n=N, one obtains a Hamiltonian which is identical to the
real space one, except for an inversion of the parameter
�! ~� � 2�=�N. Thus, a Hamiltonian at � in the real
space representation is identical to the Hamiltonian at ~� in
momentum space. Consequently, the spectrum of Eq. (3) at
� is identical to that at ~� � 2�=�N. Since the quantum
numbers u and t interchange upon going from the real to
the momentum space and vice versa, it follows that all
states at � that have quantum number Q � �u; t� are de-
generate with states at ~� with quantum number Q � �t; u�.

The large � limit.—Since, for any L1=lB, the three
Pfaffian ground states [11,12] are zero energy eigenstates
of Eq. (2), it follows that for any � there must be three
ground states each annihilated by all the operators QR. We
will now solve Eq. (3) in the limit �	 1. By keeping the
two largest hopping amplitudes, we obtain

 H 
 �2
X
n

��cyn �3�cn�
3 � exp���2=3��cyn �2c

y
n�1�cn�

2cn�1�:

(5)

Such a Hamiltonian penalizes states that have three parti-
cles occupying the same site or three particles occupying
two adjacent sites. All other terms in the Hamiltonian are
exponentially smaller than the ones retained. The three
zero energy states of Eq. (5) are shown in Figs. 1(a)–
1(c). Among them, the two states in Figs. 1(a) and 1(b)
break the translational symmetry. The third state shown in
Fig. 1(c) is translationally invariant. These states will be
referred to as the (02), (20), and (11) states from now on.
Thus, as in the Abelian case [3], we do obtain a simple
picture for the ground states in the large � limit. The

primary question to be answered now is whether the low
energy physics at large � is, in fact, adiabatically con-
nected to the limit �! 0, as we argued in the Abelian case.

The degeneracy.—Before we turn to this central issue,
we first highlight some crucial differences between the
Abelian and the non-Abelian problem. First, while in
both cases the correct ground state degeneracy becomes
manifest in the large-� limit, for the Abelian case this
degeneracy is dictated by (i) translation invariance,
(ii) conservation of the center-of-mass position, and
(iii) the noncommutivity between T and U. Thus, it holds
true at any value of �. This argument is no longer valid in
the present case, because T and U commute. Furthermore,
all of the ground states in the Abelian case are related by a
simple lattice translation and are, thus, energetically
equivalent. This is not true in the present case, since at
large � only two of the ground states are related by trans-
lation. Indeed, the (11) state appears as special when
compared to the (02) and (20) states, and it seems that a
nearest neighbor density-density interaction could lift the
threefold degeneracy. While this is true at large �, we
believe that such lifting of degeneracy will become expo-
nentially small as �! 0, and the threefold degeneracy will
become robust at small �. This is because, as we shall show
later, the order parameter associated with the (02) and (20)
states exponentially vanishes as �! 0.

We now show that, assuming the existence of adiabatic
continuity (to be shown below), the threefold ground state
degeneracy at any � can be explained as a consequence of
the existence of the twofold degenerate symmetry broken
states at large � alone. At large �, we may form a sym-
metric and antisymmetric linear combination of the two
symmetry breaking ground states, so that they become
eigenstates of T with eigenvalues t � 0 and t � �. It is
simple to show that both (02) and (20) have eigenvalue u �
0 with respect to the center-of-mass operator U.
Consequently, the newly formed linear combinations also
have the same eigenvalue. Thus, at large � we have a
degenerate pair of ground states with quantum numbers
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FIG. 1 (color online). The large � limits of the (a)–(c) ground
state, (d)–(f) and (i),( j) 2-hole excited states, and (g),(h) 4-hole
excited state. A vertical segment indicates the position of a
charge �Q � 1=2 domain wall; see text.
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Q � �0; 0� and Q � �0; ��. If adiabatic continuity exists,
we must have ground states with these quantum numbers at
any �, including ~�. Now let us consider applying the
duality transformation to the Q � �0; �� ground state at
~�. As we explained earlier, this transforms it to a stateQ �
��; 0� at �. Since the ground state energy at � and ~� is the
same, this transformed state must have the same energy as
the Q � �0; 0� andQ � �0; �� ground states at �. Thus, we
have generated a third orthogonal state degenerate with the
Q � �0; 0�; �0; �� ground state at the same value of �.
Consequently, the ground state is at least threefold degen-
erate. In the large � limit, the Q � ��; 0� state is the (11)
ground state.

Adiabatic continuity.—Figure 2 displays the charge-
density wave order parameter O �

P
n��1�ncyncn=N asso-

ciated with the two symmetry breaking ground states in the
u � 0 sector of Eq. (3). As explained above, these states
are evolved from the (20) and (02) states at large �. This is
manifested by the fact that jOj becomes 1, reflecting
perfect order, in the large � limit. We note that the value
of O converges remarkably fast with increasing system
size (Fig. 2), and it seems hardly necessary to look at larger
systems for this purpose. The order parameter seemingly
vanishes around � 
 0:5, very similar to the behavior
observed in the Abelian case [3]. This could lead one to
think that there is a phase transition near this point, below
which the order parameter is zero in the N ! 1 limit.
However, a careful study of the order parameter at small �
suggests otherwise. In the inset in Fig. 2, we plot the
quantity � which is related to the order parameter via O �
exp��1=�2�. Although numerical precision limits us to
� * 0:29, we observe that the order parameter continues

to display a rapidly converging, alternating behavior as a
function of system size below � � 0:5. The fact that �
converges to nonzero values as a function of the particle
number for all � values we studied clearly implies that, for
these � values, the limiting value (N ! 1) of the order
parameter is nonzero. Moreover, it seems likely that the
limiting � curve extrapolates into the origin. This implies
that as N ! 1 the order parameters associated with the
evolved (02) and (20) states stay nonzero except at � � 0
(infinite L1). This is fully consistent with our findings in
the Abelian case [3,8]. Thus, the analysis based on the
order parameter suggests that there is no phase transition.
A new feature that occurs in the non-Abelian case is the
existence of a non-symmetry-breaking ground state, i.e.,
the descendent of the (11) state, at all values of �. Because
of the exponentially small order parameter in Fig. 2, the
distinction between the two kinds of ground states becomes
academic as � decreases below 0.5.

Now we demonstrate that the exponentially small order
parameter at small � does not affect the robustness of the
energy gap. Figure 2 shows the energy gap for 10 particles
as a function of �. The data is truncated below the self-dual
point �sd �

�������������
2�=N

p
because this part of the data is just the

dual image of that above �sd. In addition, due to the strong
size dependence of �sd, we expect the data below �sd to
display a stronger size dependence and, hence, to be less
useful for the purpose of extrapolation. Although, due to
the limitation on the particle number, our study of the gap
is limited to � * 0:8, it is apparent that the energy gap does
not decline as the order parameter becomes exponentially
small. In addition to the above numerical evidence, there is
an extra reason to believe that for the bosonic non-Abelian
state the gap cannot be caused by symmetry breaking, be-
cause there is a totally symmetric ground state at all values
of �. To summarize, both the numerical results for the or-
der parameter and the energy gap are consistent with the
notion of adiabatic continuity between small and large �.

Quasiparticles.—Again, we first understand the quasi-
particle and quasihole in the large � limit. The most naive
way to produce a charge �Q � 1 state is to remove one
boson from one of the ground states, say, the (02), as shown
in Fig. 1(d). (Using the nomenclature of the electron, we
regard the boson as negatively charged.) As for all the
Abelian cases, the positively charged defects cost zero
energy. A closer inspection of Fig. 1(d) reveals that such
a defect consists of two domain walls [between the ground
states in Figs. 1(a) and 1(c)] placed at the closest distance.
Since a string of 1’s does not cost any additional energy, it
is possible to separate the two domain walls, without
injecting any extra charge, by converting an even sequence
of 0202. . .02 into a string of 1’s as shown in Fig. 1(e). The
two domain walls at the end of the string each carry a
charge �Q � 1=2. Now let us consider removing a boson
from the (11) ground state. By turning an odd string of 1’s
into 0202. . .20 as shown in Fig. 1(f), two domain walls of
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FIG. 2 (color online). Curves: The charge-density wave order
parameter O of the ground states in the zero center-of-mass
sector for N � 4, 6, 8, and 10 particles. These states are adiabati-
cally connected to the (20)- and (02) states in Figs. 1(a) and 1(b).
The ground state that is connected to the (11) state in Fig. 1(c) is
free of symmetry breaking and, hence, has O � 0. The single
curve labeled ‘‘gap’’ shows the energy gap for N � 10 versus �
for � > �sd. Gap data are scaled down by a factor of 4 for
convenience. Inset: The quantity � � 1=

����������������
� logO

p
.

PRL 97, 056804 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
4 AUGUST 2006

056804-3



charge �Q � 1=2 are produced. A similar procedure can
lead to �Q � �1=2, nonzero energy, antidomain walls.
Since there is adiabatic continuity, we should be able to
tune � down and let each of these domain walls evolve into
the fractional charged quasiholes (delocalized in the L1

direction) in the non-Abelian Hall liquid. We note that the
quasiparticle/quasihole charge of �Q � �1=2, which fol-
lows naturally from our simple large � analysis, indeed
agrees with the prediction in Ref. [9].

Next we consider four quasiholes. In Figs. 1(g) and 1(h),
two distinct four domain wall configurations [on top of the
(02) ground state] are presented. These patterns are differ-
entiated by the fact that in Fig. 1(g) [Fig. 1(h)] the middle
string of 0,2’s are in phase [out of phase] with those at the
two ends. To transform Fig. 1(g) to 1(h), one has to move
the 1 at the left end of the middle 0,2 string to the right end
and shift the entire 0,2 string to the right. For far separated
domain walls, this move clearly involves many particles
and is very nonlocal. Comparing Figs. 1(g) and 1(h), one
might regard the two middle domain walls as having differ-
ent positions (a shift of one lattice constant). However, this
distinction will cease to exist if we let � decrease so that
further range hopping can take place. In that case, each of
the domain walls discussed above will smear into a wider
and smoother transition region between different ground
states. The width of the domain wall increases as � de-
creases. Although the tiny difference in the positions of the
domain wall becomes immaterial as � decreases, the fact
that in the case of infinitely separated domain walls no
finite particle and local moves can transform Figs. 1(g) and
1(h) suggests that they will remain distinct. This results in a
twofold degeneracy for four quasihole states at fixed posi-
tions. Similarly for six quasiholes, we have three discon-
nected string of 1’s. In the gap between the first and second,
and second and third, strings (of 1’s), we can again insert
either (02) or (20) ground states. Thus, for six quasiholes at
fixed positions, we have a degeneracy of 4. Continuing this
line of argument, we conclude that, in the presence of 2n
quasiholes, we have a 2n�1-fold degeneracy. Similar argu-
ments can be carried out for the quasihole injection into the
other two ground states. This is consistent with the pre-
diction of the wave function analysis [13].

The above arguments lead us to an interesting observa-
tion. There is an intricate difference between the two-
domain-wall states in the (02) and (20) background and
the (11) background. Let us first focus on the (11) back-
ground. Figures 1(i) and 1(j) represent two patterns of
domain wall configurations differing by one lattice con-
stant translation. Since we have removed a boson, which
changes the filling factor away from 1, the U eigenvalues
of these two patterns are different. Hence, they cannot be

mixed by further range hopping when we decrease � in
Eq. (3). Now let us consider the (02) background. It is
simple to convince oneself that due to the symmetry break-
ing and the periodic boundary condition we can only shift
the two domain walls by even multiple lattice constants.
Consequently, there are twice as many two-domain-wall
states in the (11) background as in the (02) and (20) back-
grounds. Interestingly, the analysis of Greiter et al. shows
that for fixed quasihole positions, including all ground
states, the two-quasihole state is fourfold rather than three-
fold degenerate. We believe that the extra degeneracy is
due to the existence of twice as many two-domain wall
states that can be added to the (11) ground state.

In conclusion, we have shown that the bosonic non-
Abelian Hall liquid is adiabatically connected to simple
density patterns as the small dimension of the torus de-
creases. Together with our earlier result on the Abelian
Hall liquid [3,4,8], a powerful conclusion emerges. The
paradigms of quantum number fractionalization in one
dimension (polyacetylene) and two dimensions (fraction-
ally quantum Hall effect) are, in fact, equivalent.

D. H. L. and A. S. are supported by DOE Grant No. DE-
AC03-76SF00098.

Note added.—In the process of preparing this manu-
script, we became aware of a paper by Bergholtz et al. [14]
on a closely related subject for the � � 1=2 fermionic
Pfaffian state.
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