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We report peculiar velocity quantization phenomena in the classical motion of an idealized 1D solid
lubricant, consisting of a harmonic chain interposed between two periodic sliders. The ratio vc:m:=vext of
the chain center-of-mass velocity to the externally imposed relative velocity of the sliders stays pinned to
exact ‘‘plateau’’ values for wide ranges of parameters, such as slider corrugation amplitudes, external
velocity, chain stiffness, and dissipation, and is strictly determined by the commensurability ratios alone.
The phenomenon is explained by one slider rigidly dragging the kinks that the chain forms with the other
slider. Possible consequences of these results for some real systems are discussed.
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In this Letter we report surprising exact velocity quan-
tization phenomena in a one-dimensional (1D) nonlinear
model inspired by the tribological problem of two sliding
surfaces with a thin solid lubricant layer in between [1,2].
The model layer consists of a chain of N harmonically
interacting particles interposed between two rigid gener-
ally (but not necessarily) incommensurate sinusoidal sub-
strates [the two ‘‘sliding crystals’’, sketched in Fig. 1(c)]
externally driven at a constant relative velocity vext. The
equation of motion of the ith particle is
 

m �xi � �
1

2
�F� sink��xi � v�t� � F� sink��xi � v�t��

� K�xi�1 � xi�1 � 2xi� � �
X

�

� _xi � v��; (1)

where m is the mass of the N particles, K is the chain
spring constant, and k� � �2��=a� are the wave-vector
periodicities of potentials representing the two sliders,
moving at velocities v�. We set, in full generality, v� �
0 and vext � v� � v�. � is a phenomenological parameter
substituting for various sources of dissipation, required to
achieve a stationary state, but otherwise with no major role
in the following. F� are the amplitudes of the forces due to
the sinusoidal corrugation of the two sliders (we will
commonly use F�=F� � 1 but we checked that our results
are more general). We take a� � 1,m � 1, and F� � 1 as
our basic units. The relevant length ratios [3,4] are there-
fore r� � a�=a0; we will take, without loss of generality,
r� > r�, and confine our attention mostly to cases with
r� > 1. The interparticle equilibrium length a0, not enter-
ing explicitly the equation of motion (1), appears only via
the boundary conditions, which are taken to be periodic
(PBC) [5], xN�1 � x1 � Na0, to enforce a fixed density
condition for the chain [6], with a coverage r� of chain
atoms on the denser substrate. Previous studies on a related
model [2] achieved the sliding through the application of a

constant driving to one of the two substrates, via an addi-
tional spring. That procedure obscures the surprising quan-
tization phenomena which are instead uncovered when
sliding occurs with a constant velocity vext.
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FIG. 1 (color online). (a) Average drift velocity ratio w �
vc:m:=vext of the chain as a function of its spring stiffness K
for different length ratios (r�, r�): commensurate (3=2, 9=4),
golden mean (GM) (�, �2), spiral mean (SM) (�, �2) (�	
1:3247 . . . is the solution of �3 � �� 1), and (��1, �). The
plateau labeling is explained in the text. Here � � 0:1, vext �
0:1, and periodic boundary conditions [5] are used. The (�, �2)
1=1 plateau value is w � 0:381 966 . . . , identical to 1���1 to
eight decimal places. (b) The main plateau speed w as a function
of r�. (c) A sketch of the model.
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Upon sliding the substrates, vext � 0, the lubricant chain
slides, too. However, it generally does so in a very unex-
pected manner: the time-averaged chain velocity w �
vc:m:=vext is generally asymmetric, namely, different from
1=2. Even more surprisingly, w is exactly quantized, for
large parameter intervals, to plateau values that depend
solely on the chosen commensurability ratios. The asym-
metrical w plateaus are generally very stable, and insensi-
tive to many details of the model, due to their intrinsically
topological nature; we show that they are the manifestation
of a certain density of solitons in the lubricant which are set
into motion by the external driving.

We now turn to illustrating these results. We integrated
the equations of motion (1) starting from fully relaxed
springs (xi � ia0, _xi � vext=2), by a standard fourth-order
Runge-Kutta method. After an initial transient, the system
reaches its dynamical stationary state, at least so long as �
is not exactly zero. Figure 1(a) shows the resulting time-
averaged center-of-mass (c.m.) velocity vc:m: as a function
of the chain stiffness K for four representative (r�, r�)
values. We find that w is generally a complicated function
of K, with flat plateaus and regimes of continuous evolu-
tion, in a way which is qualitatively similar for different
cases. The main surprise is that all plateaus show perfectly
flat w � vc:m:=vext that are constant (quantized) to all
figures of numerical accuracy, the precise value strikingly
independent not only of K, but also of �, vext, and even of
F�=F�. Open-boundary simulations show moreover that
the PBC used are not crucial to the plateau quantization,
which occurs even for a lubricant of finite size and not
particularly large N, such as a hydrocarbon chain molecule
would be.

To explore the origin of the universality ofw, we analyze
the dynamics for a large number of values of (r�, r�), and
observe that: (i) at least one velocity plateau as a function
of K occurs for any (r�, r�); (ii) additional narrower
secondary plateaus often arise for stiffer lubricant (larger
K, see Fig. 1); (iii) the velocity ratio w of the first plateau
found for increasing K satisfies w � 1� r�1

� for a large
range of (r�, r�).

We can understand these results as follows. Consider
initially the situation of quasicommensuration of the chain
to the a� substrate: r� � 1� �, with small �. This in-
duces a density �sol � �=a� of solitons (or kinks, essen-
tially substrate minima holding two particles, rather than
one) [6]. The second, less oscillating a� slider, which
moves at velocity vext, will drag the kinks along: vsol �
vext. If �0 � 1=a0 � r�=a� is the linear density of lubri-
cant particles, mass transport will obey vc:m:�0 � vsol�sol.
This yields precisely w � vc:m:=vext � �sol=�0 � �=r� �
1� r�1

� . Thus the exact plateaus arise because the
smoother slider (whose exact periodicity r� > r� is irrele-
vant) drags the kinks, of given density, at its own full speed
vext, as illustrated Fig. 2(a). As shown in Fig. 1(b), this
physics extends even to large j�j 	 1, where no individual

kink can be singled out. This works even for � < 0 (anti-
kinks), where, remarkably, the lubricant c.m. moves in the
opposite direction with respect to the driving vext [w< 0,
see Fig. 1(a) for r� � ��1]: exactly as holes in a semi-
conductor, antikinks (carrying a negative ‘‘charge’’) mov-
ing at velocity �vext effectively produce a backward net
lubricant motion. The motion of the antikinks (regions of
increased interparticle separation) is illustrated in Fig. 2(b).

The motion of particles is instructive. Figure 3 plots the
time evolution of the velocity of a single chain particle _xi,
and of vc:m:, for a value of K inside a plateau, K � 1, for
r� � � and r� � � of Fig. 1. Here two clear kinds of
behavior emerge. Remarkably, the single-particle motion
in the golden mean (GM) plateau is perfectly time periodic.
A similar periodic dynamics is found, in appropriate re-
gimes, for all rational and quadratic irrational (r�, r�)
values we tested. The spiral mean (SM) motion is definitely
not periodic. The Fourier spectrum of the particle motion,
shown in Fig. 3(c), confirm that the SM yields only quasi-
periodic orbits with two prominent incommensurate fre-
quencies f� and f�. However, a phase cancellation
between the Fourier spectra of different chain particles
(all having the same amplitude spectrum, with different
phases) yields strictly periodic c.m. motion. Periodic c.m.
oscillation around an exactly quantized drift velocity is a
common feature of all plateaus in the chain dynamics.
These periodic oscillations can be understood as the sol-
itons moving at velocity vext encountering a periodic
Peierls-Nabarro potential [6] of period a�. The corre-
sponding frequency of encounter vext=a� is clearly visible
in Fig. 3(d). We observe that the Peierls-Nabarro barrier
vanishes (strictly constant vc:m:) for all cases where the
particle motion is periodic.

To understand why single particles may move pe-
riodically in some plateaus, let f� � vc:m:=a� and
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FIG. 2 (color online). Snapshots of the distance between
neighbor lubricant particles in the chain xi � xi�1 at three
successive time frames. All parameters as in Fig. 1, except r� ’
10:36, and K � 10 (inside the main plateau). (a) r� � 1:031
(kink density �=a� � 0:031); (b) r� � 0:995 (antikink density
j�j=a� � 0:005).
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f� � �vext � vc:m:�=a� be the average encounter fre-
quency of a generic particle with the two substrate periodic
corrugations. Whenever these two frequencies are mutu-
ally commensurate,

 n�f� � n�f� �integers n��; (2)

each particle is driven by the two generally incommensu-
rate corrugations in an effectively periodic way, and
undergoes a periodic oscillation, of period T � n�=f� �
n�=f�. This is observed in the Fig. 1 examples: r� � �
yields n�=n� � 1=1 and r� � 3=2 yields n�=n� � 4=3.
The plateaus in Fig. 1 are labeled accordingly. When f�
and f� are incommensurate, the motion is quasiperiodic,
as illustrated by the SM case of Fig. 3. By definition,
f�=f� � �r�=r��w=�1� w�: for any given plateau ve-
locity w, suitable choices of r�=r� can make the two
frequencies either commensurate, as in Eq. (2), or incom-
mensurate. In particular, for the main plateau we have
f�=f� � r��r� � 1�=r�, which can be made rational
for any choice of r�, by choosing a suitable r� � r��r� �
1��1n�=n�. For example, we verified that, for r� � � and
r� � ���� 1��1, individual particles do oscillate peri-
odically in the main plateau.

Low driving velocities vext are beneficial to the appear-
ance and width of plateaus. For increasing vext, the pla-
teaus shrink and eventually disappear, still remaining exact

while they do so. The critical vext where the plateaus end
depends on K, but is usually smaller than unity, for the
parameters of Fig. 1. The 1=1 plateau of the GM case is
especially wide and robust against an increase of vext (for
the parameters of Fig. 1 and K � 4, up to vext ’ 1:5) and
other perturbations. This seems related to� being uniquely
associated to the equal drive-frequency ratio, n�=n� �
1=1:� appears therefore, in the present dynamical context,
as the ‘‘most commensurate’’ irrational, at variance with
static pinning in the standard Frenkel-Kontorova model,
where the opposite is true [6,7].

The finding of exact plateaus implies a kind of ‘‘dynami-
cal incompressibility,’’ namely, identically null response to
perturbations or fluctuations trying to deflect the c.m.
velocity away from its quantized value. In order to probe
the robustness of the plateau attractors, we introduced an
additional constant force F acting on all particles in the
chain, trying to alter the force-free sliding in the plateau
regime. As expected, as long as F remains sufficiently
small, it does perturb the single-particle motions but has
no effect whatsoever on w, which remains exactly pinned
to the attractor (vc:m: 
 vplateau). The plateau dynamics is
only abandoned above a critical force Fc. This dynamical
depinning takes place through a series of type-I intermit-
tencies [8], as shown in Fig. 4(b) where vc:m:�t� is plotted
against a slow adiabatic ramping of F.
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FIG. 4 (color online). Dynamical depinning force Fc for the
GM plateau (a), extracted by a slow adiabatic increase of the
force F applied to all particles, until intermittencies appear,
signaling collective slips (b). The critical behavior of the average
velocity for K ! Kc (c), (d), showing the typical square-root
singularity (dotted line) associated to type-I intermittencies.
Here � � 0:1, and vext � 0:1 were used.

FIG. 3 (color online). Time evolution of a particle velocity _xi,
and of the chain c.m. velocity vc:m: (fluctuations rescaled by a
factor 50), for the GM (a) and SM (b) cases of Fig. 1. Amplitudes
of the Fourier spectrum of _xi�t� (c) and of vc:m:�t� (d) for r � �.
Individual particle spectra have identical amplitudes, and differ
only in the phases, which leads to a remarkable cancellation in
the vc:m: power spectrum. Here K � 1, � � 0:1, and vext � 0:1.
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A precise value of Fc can be obtained by ramping F with
time with a gentle enough rate of increase or, alternatively,
by a Floquet-Lyapunov linear stability analysis [9], to be
shown elsewhere. The value of Fc is a function of the
parameters, and Fc vanishes linearly when K approaches
the border Kc of the plateau, as in Fig. 4(a). The depinning
transition line Fc shows a jump �v in the average vc:m: and
a clear hysteretic behavior (not shown) as F crosses Fc, for
not too large values of K <Kc, with �v decreasing to 0 as
K increases. K � Kc represents a dynamical critical point,
where the sliding chain enters or leaves a dynamical orbit.
The precise value ofKc depends on parameters such as vext

and �; however, its properties do not. As K approaches Kc
from above (no external force), vc:m: approaches vplateau in
a critical manner, as suggested in Fig. 1. This is detailed in
Fig. 4(c) and 4(d), where the critical behavior is shown to
be �v / �K � Kc�

1=2, the value typical of intermittencies
of type I [8]. For K * Kc, in fact the chain spends most of
its time moving at vc:m:�t� ’ vplateau, except for short bursts
at regular time intervals �, where the system as a whole
jumps ahead by a0, i.e., an extra chain lattice spacing
(collective slip). The characteristic time � between succes-
sive collective slips diverges as � / �K � Kc��1=2 for K !
Kc, consistent with the critical behavior of w. We verified
that the w plateaus for more general values of r� and of r�
show the same kind of infinite stiffness, and a critical
decrease of Fc near the plateau edge, similar to that of
Fig. 4(a) for the GM.

The phenomena just described for a model 1D system
are quite extraordinary; it would be fascinating if they
could be observed in real systems. Nested carbon nano-
tubes [10], or confined one-dimensional nanomechanical
systems [11], are one possible arena for the phenomena
described in this Letter. Though speculative at this stage,
one obvious question is what aspects of the phenomenol-
ogy just described might survive in two-dimensions (2D),
where tribological realizations, such as the sliding of two
hard crystalline faces with, e.g., an interposed graphite
flake, are conceivable. Our results suggests that the lattice
of discommensurations—a Moiré pattern—formed by the
flake on a substrate, could be dragged by the other sliding
crystal face, in such a manner that the speed of the flake as
a whole would be smaller, and quantized. This would
amount to the slider ‘‘ironing’’ the solitons onward.
Dienwiebel et al. [12] demonstrated how incommensur-
ability may lead to virtually friction-free sliding in such a
case, but no measure was obtained for the flake relative
sliding velocity. Real substrates are, unlike our model, not

rigid, subject to thermal expansion, etc. Nevertheless the
ubiquity of plateaus shown in Fig. 1, and their topological
origin, suggests that these effects would not remove the
phenomenon. A real-life situation with a distribution of
differently oriented crystalline micrograins, each possess-
ing a different incommensurability, is also potentially in-
teresting; each grain, we expect, will tend to stabilize a
certain average c.m. velocity depending on its incommen-
surability. Other realizations or applications inspired by the
physics described by our model might be accessible, nota-
bly in grain boundary motion, in the sliding of optical
lattices [13] or of charge-density-wave systems [14].
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