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A critical advance in the technique of low-energy electron diffraction is presented and shown to enable
determining detailed structures of nanomaterials, based on experimental methods that already exist or
have been proposed. Our new cluster approach speeds up the computation to scale as n logn, rather than
the current n3 or n2, with n the number of atoms, for example. Applications are illustrated for C60

molecules adsorbed on a Cu(111) surface, with and without coadsorbed metal atoms, exhibiting sensitivity
to important structural features such as buckyball size and deformation.
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Nanomaterials open up new fields of science and hold
great promise for many novel applications [1,2]. As in
other fields, the atomic-scale structure (including bond
lengths and bond angles) plays a fundamental role, espe-
cially in understanding and predicting a multitude of useful
materials properties. Such information is now sorely miss-
ing, for lack of suitable techniques to obtain it from
experiment.

Indeed, few techniques are currently available, and none
has yet been used to our knowledge, to determine the de-
tailed atomic-scale structure of nanomaterials from experi-
ment with the precision needed to calculate their proper-
ties, i.e., on the scale of 0:01 nm � 0:1 �A or better. X-ray
diffraction (XRD) is a candidate for complex structures
that are periodic and well prepared [3]. X-ray absorption
fine structure (XAFS) is much more tolerant of long-range
disorder, but less capable of handling the mix of inequiva-
lent atomic environments typical of nanostructures [4].
Scanning tunneling microscopy (STM) provides impres-
sive atomic-scale imaging of single nanostructures, but re-
quires theoretical modeling to extract bond lengths and
angles [5]. Theory, whether phenomenological or using
first principles, can predict nanostructural details, but must
itself be checked against determination from experiment.

We prove conclusively here that low-energy electron
diffraction (LEED) offers great promise for the detailed

structural determination of many nanomaterials. LEED
experiments have already produced diffraction patterns
from arrays of ordered nanoparticles, such as adsorbed
buckminsterfullerenes [6]; it would be a routine matter to
measure their diffracted intensities with existing equip-
ment. For less well-ordered nanostructures, it should be
possible to focus the incident LEED beam onto a single
particle or small area and record the diffracted pattern,
either as angular dependent intensity data or as energy-
dependent data (‘‘I-V curves’’): this has been proposed in
the form of convergent-beam LEED [7]; diffraction from
objects as small as a few nanometers is conceivable.
Another approach is to use a STM tip as electron source
to form a very narrow beam [8]: such an experiment has
already produced diffraction patterns from areas as small
as 400 �m across, with areas smaller than 50 nm across
being possible in principle.

LEED also requires a theory to extract structural infor-
mation, due to strong multiple scattering of the diffracted
electrons [9,10]. The multiple scattering, which can be
formulated as the solution of a matrix-vector equation
Ax � b, requires compute times that scale as N3 for matrix
inversion or N2 for some iterative schemes, as imple-
mented in existing LEED codes, where the matrix dimen-
sion N is proportional to the number of inequivalent atoms
n. Such power-law scaling can be very challenging for

PRL 97, 055505 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
4 AUGUST 2006

0031-9007=06=97(5)=055505(4) 055505-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.97.055505


nanostructures, for which n can be in the hundreds andN in
the many thousands, at least. The present work develops a
theoretical scheme that scales much more favorably,
namely, as N logN and thus n logn, making nanostructures
accessible. It is a cluster approach based on mathematical
methods developed in the context of the multiple scattering
of electromagnetic waves [11,12]. Our adaptation of these
methods is shown here to permit the calculation of LEED
intensities for representative nanostructures, for which we
chose buckminsterfulleres (C60) adsorbed on surfaces. By
analyzing structural sensitivity, we prove that this approach
can also be applied to the task of structural determination
of nanostructures.

We describe three new methods to solve the multiple
scattering problem: an exactly convergent method (conju-
gate gradient or CG), for reference and for greater speed
compared to direct matrix inversion; an approximate grid-
based method (sparse-matrix canonical grid or SMCG);
and the approximate ‘‘UV’’ method. While these methods
have been used in other contexts, it was necessary to
carefully adapt them to the specific and challenging char-
acteristics of LEED with its high angular momenta, in
particular, to ensure good convergence [13].

The CG method [14] solves the matrix-vector equation
Ax � b iteratively: at each iteration step, the method uses
the gradient of the right-hand side to improve the solution.
Since our multiple scattering matrix is not Hermitian, we
adopt the bi-conjugate gradient (BiCG) version [15], which
uses both Ax � b and its adjoint equation. If BiCG needs
Ns steps to converge and if A has dimension N, the com-
pute time needed scales as NsN2, while the required mem-
ory scales as N2, compared to the inversion method’s N3

and N2 scaling behaviors, respectively.
In the SMCG method [11], the scaling is improved by

fast Fourier transform (FFT). If matrix A is assumed to be
strictly periodic (as for a periodic structure), i.e., An;m �
An�m, solving Ax � b scales as N logN in terms of com-
pute time. Moreover, only 2N � 1 elements of A are dis-
tinct, significantly reducing the memory requirement. For
electron diffraction, this requires that the atoms occupy a
periodic, rectangular spatial grid. With an arbitrary non-
periodic structure, including any nanostructure, we can still
construct such a grid and refer each atom to its nearest grid
point: then the propagation of an electron from an atom i to
an atom j proceeds via the grid points P and Q nearest to
atoms i and j, respectively, i.e., along the path i! P!
Q! j. This method is exact if a sufficient number of
partial waves are used. Solving Ax � b by BiCG now
scales as NsNg logNg in compute time, if Ng is the total
number of grid points. The required memory only scales
linearly with Ng.

An alternative method to SMCG uses singular value
decomposition (SVD). If the rank of matrix A (i.e., the
number of its nonzero eigenvalues) is r < N, A can be
factored into a product of three matrices, AN�N �
UN�rDr�rVr�N , where the smaller diagonal matrix D

contains the nonzero eigenvalues of A, while U and V
are rectangular. LEED does not produce vanishing eigen-
values, but this approach can still be used approximately by
equating small eigenvalues to zero: we can then replace Ax
by UDVx. Thereby, the smaller is r, the larger are the
savings in computer operations. To efficiently find the rank
and the singular values of a matrix, the UV method was
proposed for the SVD decomposition [12]. The resulting
accuracy depends on the choice of the sampled rows and
columns. Since their number can be much smaller than N,
the total compute time of UV-BiCG can scale more effi-
ciently than Ns � N2: empirically, for electromagnetic
scattering, the scaling [12] is like NsN logN.

In LEED, multiple scattering is strong, due to large cross
sections, and highly anisotropic, requiring many partial
waves. Adding the complexity of nanostructures, namely,
a large number of inequivalent atoms, and the need to
search for the solution among many trial structures, there-
fore poses a very serious computational challenge.

The standard LEED method [9,10] calculates matrices
Ti, representing the amplitudes due to scattering paths
ending at all atoms i �i � 1; . . . ; n�, including all partial
waves and all multiple scattering paths within a suitably
chosen cluster or layer of atoms. The matrices Ti are the
solution of the equation AT � t, where T �
�T1 T2 � � � Tn�T , while t � �t1 t2 � � � tn�T contains the
known atomic scattering properties of each atom i, and
A � I � tG also contains the unit matrix as well as Green’s
functions G for propagation between the various atoms.
The dimension N of matrix A is proportional to the number
n of inequivalent atoms in the cluster or layer and to the
number of partial waves needed, L � �lmax � 1�2, typically
25 to 100. Efficiently solving AT � t for representative
nanostructures is our aim here. Our implementation (in a
code named NanoLEED) allows both periodic and non-
periodic structures, including isolated nanoclusters.

To test our methods, we performed LEED calculations
for buckminsterfullerenes (C60); in Fig. 1, we compare
selected LEED beam intensities vs voltage (I-V curves)
calculated for a periodic monolayer of pure C60: a well-
converged CG result serves as reference for approximate
SMCG and UV results, as well as a combined CG�
SMCG� UV approach described below. Requiring the
same number of iterations to converge as CG, the SMCG
calculation used a three-dimensional grid spacing of
0.4 nm. The UV calculation neglected all the matrix ele-
ments irrelevant to the rank calculation; our procedure
typically yielded ranks �17% of N. We chose a realistic
lmax � 7 and inelastic potential of Vi � �5 eV. The accu-
racy of the calculations is seen to yield visually indistin-
guishable curves. At 100 eV, our computer yielded
compute times per iteration for these CG, SMCG, and
UV results of 252.81, 77.75, and 94.65 sec, respectively.

We now discuss the relative performances of CG,
SMCG, and UV observed in our LEED tests. We find that
each method outperforms the others in specific circum-
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stances, so that a combined approach will be most
appropriate.

First, SMCG is most effective in LEED for a large
number of atoms, due to the fact that the time-consuming,
grid-related results are common to all atoms closest to the
same grid point. Second, SMCG tolerates a reasonably low
lmax to properly describe distant atoms but needs higher
lmax for closely packed atoms. Thus, SMCG outperforms
CG and UV for large numbers of atoms and large inter-
atomic distances. The accuracy of the UV method depends
on the above mentioned sampling of rows and columns and
does not depend on the value of lmax. In the case of LEED,
it is quite easy to design a suitable sampling algorithm for
small matrices, corresponding to small numbers of atoms,
but this topic requires more research for large matrices, i.e.,
for large numbers of atoms and thus more distant atoms.
Consequently, UV at present works best for smaller clus-
ters, although not as well as CG for the smallest clusters.
CG is most effective for very small atom numbers and
distances, such as a small cluster of close-packed neigh-
bors. In the tested case, combining the advantages of
SMCG and UV yields very precise results (see Fig. 1) in
66.66 seconds per iteration.

We can exploit the relative strengths of CG, SMCG, and
UV by splitting the initial matrix A into three parts, A �
Ad � AUV � ASMCG, each of which is then treated with a
different method. Here, Ad includes close atoms only (and
the unit matrix I of A � I � tG), which are best treated by
CG; AUV includes atoms with intermediate separations,
best treated by UV; and ASMCG includes only distant atoms,
treated by SMCG. This decomposition has been used for
rough-surface scattering problems under the name ‘‘UV-
SMCG’’ [16].

Consequently, the compute time per iteration has three
additive components, with compute times that scale differ-

ently: for SMCG as Ng logNg, where the number of grid
points Ng is normally smaller than the number of atoms in
the cluster; for CG as the (relatively small) number of
closest pairs of atoms; and for UV as the (also relatively
small) number of UV-treated pairs of atoms. Thus the
overall performance of the combined CG� SMCG�
UV approach depends on the structure type. However, for
large nanostructures, the SMCG part always strongly
dominates, so the overall time approaches its favorable
Ng logNg scaling. For example, in the C60=Cu�111� test
case, each iteration step was completed in 68.83 sec:
9.20 sec for the UV part, 2.51 sec for the CG part, and
57.12 sec for the SMCG part. Figure 2 verifies that the
combined method approaches the Ng logNg scaling.

The time-consuming SMCG only contributes �20% of
the final intensity; if we neglect that part at first and then
feed the approximate result into a full-matrix calculation as
an initial guess, we can save more than half of the original
compute time.

A central application of LEED has been the atomic-scale
structural determination of single-crystal surfaces, thanks
to the high sensitivity of I-V curves to changes in atomic
positions. We can now prove that this sensitivity to struc-
ture is maintained for nanostructures. For this, we tested
our methods for a monolayer of C60 molecules, and of
endohedral and exohedral C60 by addition of single Cu or
Li atoms within and outside each C60, respectively. For
similarity with known structures reported in the literature
[6], we ordered these nanostructures as adsorbates with
(4� 4) periodicity on a Cu(111) single-crystal substrate,
the C60 centers being located over hollow sites. Since the
substrate lies deep under the outer surface, we included
only 4 Cu layers, the number of atoms being n � 124 or
125 per unit cell, without or with a Li or Cu atom,
respectively.

Figures 3 and 4 show I-V curves for representative
diffracted beams, calculated with our new combined
method. Figure 3 illustrates a very strong dependence on
the C60 radius, which varies in steps of 0:02 nm � 0:2 �A,
while the distance between the substrate and the nearest C
atoms is fixed: all beams exhibit similar sensitivity.
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FIG. 2. Actual compute times of our combined CG�
SMCG� UV approach (points) for different numbers of grid
points, representing larger nanoclusters, compared with a
N logN extrapolation of the leftmost point.
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FIG. 1. Comparison of LEED intensities calculated by differ-
ent methods described in the text, for a periodic monolayer of
C60 that mimics a (4� 4) layer on Cu(111), absent here, using
the corresponding fractional-order beam notation, at normal
incidence. Curves are offset vertically for clarity.
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Figure 4 compares results with Li or Cu in three different
positions consistent with normal interatomic distances,
while the C60 is allowed to distort by partial flattening, as
a hypothetical example of a possible response to the pres-
ence of exohedral or endohedral metal.

In summary, we have adapted new efficient and accurate
methods to enable LEED calculations for complex nano-
structures. These methods scale as n logn, rather than the
current n3 or n2, with the number of inequivalent atoms n.

Sensitivity of the I-V curves to structural changes was
proven and illustrated with LEED calculations performed
for a monolayer of C60 adsorbed on Cu(111). Experimental
techniques necessary to perform LEED measurements on
ordered nanostructures already exist. Given the satisfactory
sensitivity and the efficient scaling recorded for LEED
simulations, we believe that detailed structural determina-
tion for materials with very large unit cells and for nano-
clusters is now possible, a key advance for progress in
nanoscience and technology.
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FIG. 3. As Fig. 1, but including 4 layers of Cu(111) under the
periodic (4� 4) C60 monolayer. The radius of the C60 molecules
is varied as indicated, keeping constant the spacing between the
Cu and nearest C.
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FIG. 4. As Fig. 3, but adding one atom of Li (at left) or Cu (at
right) for each C60 molecule, in either of three positions: inside
and 0.143 nm (Li) or 0.174 nm (Cu) above the center of C60 (‘‘in
and up’’), or inside and 0.143 nm (Li) or 0.174 nm (Cu) below
the center of C60 (‘‘in and down’’), or interstitially between C60s
(‘‘out’’), using realistic interatomic distances. In the inside cases,
the C60 sphere is flattened on the side of the nearest metal atom
by reducing the perpendicular C-metal spacings by 20%.
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