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Using an analytical theory, experimental terahertz time-domain spectroscopy data, and numerical
evidence, we demonstrate that the frequency dependence of the absorption coupling coefficient between
far-infrared photons and atomic vibrations in disordered materials has the universal functional form,
C�!� � A� B!2, where the material-specific constants A and B are related to the distributions of
fluctuating charges obeying global and local charge neutrality, respectively.
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Since their name indicates a lack of order, it is perhaps
unexpected that all disordered materials, regardless of their
chemical composition, often behave very similarly in re-
sponse to external probes. Low-temperature anomalies in
thermodynamical properties of amorphous solids are one
example [1]. Related to these is the pileup of vibrational
modes in excess of the Debye vibrational density of states
(VDOS), g�!� / !2, at typical frequencies �30 cm�1,
known as the boson peak (BP) (see, e.g., [2], and references
therein). Interaction of photons with atomic vibrations in
disordered materials is also expected to manifest universal
behavior, especially in the far-infrared (FIR) frequency
domain [3], 1–100 cm�1, where the atomic vibrations are
material independent and resemble distorted sound waves.

The simplest first-order perturbation process of photon
interaction with atomic vibrations is FIR absorption char-
acterized by a linear absorption coefficient, ��!� �
C�!�g�!�, which is measured by IR spectroscopy—one
of the most valuable experimental techniques to assess the
vibrational properties of amorphous materials [4,5]—and
is found generally be ��!� / !2 in the FIR domain. The
coefficient C�!� quantifies the degree of coupling between
IR photons and atomic vibrations. It depends on the vibra-
tional eigenmodes and the distribution of atomic charges.
The answer to the question about a possible universal
frequency dependence of C�!� for all or most disordered
materials in the FIR range has so far been uncertain,
because (i) C�!� cannot be measured directly, and two
independent experiments [for measuring ��!� and g�!�]
are necessary, and (ii) there is no rigorous analytical theory
for ��!� in disordered systems—previous theoretical
models concentrated mainly on the origin of the BP modes
[6] within a particular soft-potential model or on the role of
charge disorder in simple lattice models without positional
disorder [7].

In this Letter, we demonstrate that, for disordered ma-
terials in the FIR regime, C�!� indeed exhibits a universal
frequency dependence of the following form:

 C�!� ’ A� B!2; (1)

where A and B are material-dependent constants. This law
is valid in the low-frequency part of the FIR domain,
namely, for frequencies below the Ioffe-Regel crossover,
! & !IR, separating well propagating plane waves from
strongly damped ones due to disorder-induced scattering
[8]. In many materials, the Ioffe-Regel frequency is close
to the BP [9]. We provide simple analytical arguments,
confirmed by numerical analyses of molecular-dynamics
(MD) models, and terahertz (THz) time-domain spectros-
copy (TDS) measurements of ��!� for two glassy systems,
SiO2 and As2S3, and use independently available experi-
mental VDOS data for g-SiO2 [10] and g-As2S3 [11,12] to
extract C�!�.

Our analytical arguments are based on an analysis of the
following general expression for the coefficient of absorp-
tion of FIR photons by harmonic atomic vibrations ob-
tained within the rigid-ion model [13]:

 C�!� ’ C0

��������
X

i

qi������
mi
p ei�!�

��������
2
; (2)

where C0 � 2�2n=c"1=2
1 , with mi and qi being the atomic

masses and fixed atomic charges, ei�!� the component of
the eigenvector of frequency ! corresponding to atom i,
"1 stands for the high-frequency dielectric constant, and n
is the atomic concentration. A more general model with the
fixed charges replaced by charge tensors [4,14] should be
used for higher frequencies in order to describe properly
the absorption peak positions and their relative intensities
across the IR vibrational band, but, in the FIR range, the
rigid-ion model is adequate, as we have checked for our
density functional theory-based tight-binding (DFTB)
[15,16] MD model of g-As2S3 [17].

In ordered systems, the eigenmodes are phonons and
static atomic charges do not fluctuate and C�!� is nonzero
only for optic modes at the center of the Brillouin zone. In
disordered systems, structural disorder leads to a static
charge transfer between atoms, i.e., to static disorder in
the qi, and to intrinsic disorder in the components of the
vibrational eigenmodes. These two related sources of dis-
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order are encoded in Eq. (2) and are responsible for the
peculiar behavior of C�!� in amorphous systems. In order
to demonstrate this, we use two known features about the
structure of the vibrational eigenmodes in the FIR regime
and about the distribution of atomic charges in glasses.
First, the disordered eigenmodes in the low-frequency
regime can be approximately expanded in plane waves
(see Ref. [8] for more detail) characterized by a wave
vector k and unit polarization vector p̂k, i.e., ei�!� ’P

k

������������
mi= �m

p
ak�!�p̂ke

ik�!��ri , with �m � N�1P
imi and ri

being the position vector for atom i �i � 1; . . . ; N�. The
distribution of coefficients ak�!� for low frequencies (at
least below !IR) has the shape of two relatively narrow
peaks describing the disorder-induced hybridization be-
tween transverse and longitudinal acoustic phonons of
the same frequency !, with the peak positions scaling
linearly with frequency [8,18]. Second, it has been found
for an ab initio MD model of g-SiO2 that the atomic-
charge fluctuations preserve approximately local charge
neutrality within SiO4 tetrahedra [4]. Similarly, we have
found local charge neutrality to be obeyed within AsS3

pyramids in a DFTB MD model of g-As2S3 [17].
These two observations lead to Eq. (1). Assuming for

simplicity that only a single plane wave with wave vector k
contributes to the disordered eigenmode [the presence of
two peaks of finite widths in the distribution ak�!� does
not change qualitatively the results presented below, at
least for ! & !IR], we can reduce the configurationally
averaged Eq. (2) to the following form: hC�!� �m=C0i ’
N�1hjSj2i, where S �

P
iqie

ik�ri . Further analysis is based
on the following rather general properties of the random
sum S: (i) if the values of qi are not random, then the
orientationally averaged S scales linearly with k for
k! 0—the same holds for random but locally correlated
values of qi (see below); (ii) if the values of qi are random
and uncorrelated, then S! const for k! 0. It is conve-
nient to split the atomic charges into two components, qi �
q1i � q2i, with q1i�frig� (depending on many atomic posi-
tions in a complicated fashion) representing uncorrelated
charge components so that hq1iq1ji � hq1iihq1ji � �2

1�ij
and, e.g., hq1ie

ik�rji ’ hq1iihe
ik�rji � 0. The random

charges q2i satisfy local charge neutrality and can be
imagined as resulting from charge transfers between
nearest-neighbor atoms, i.e., q2i �

P
j�i�qji, where j

runs over all nearest neighbors of atom i and �qji��
��qij� is the charge transfer from originally neutral atoms
j to i. In heteropolar crystals, the values of �qji are finite
and not random. In disordered systems, the values of �qji
are distributed around mean values which do not neces-
sarily coincide with those for their crystalline counterparts
(see, e.g., [4]). Such fluctuations in �qji and deviations of
the means are due to distortions in local structural units
(e.g., the Si-O-Si bond angle in g-SiO2) and the values of
�qji are highly correlated on this length scale. The ran-
dom charges q1i are not correlated with q2j and thus

hC�!� �m=C0i � N�1hjS1j
2 � jS2j

2i, where Sn coincides
with S in which qi are replaced by qni. The first compo-
nent, N�1hjS1j

2i � N�1P
ijhq1iq1jiheik�riji � �2

1, is inde-
pendent of k and thus of !. The second component can be
evaluated in the bond representation, in which S2 �

2i
P
�ij��qije

ik��rij sin�k � rij=2�with rij � rj � ri and �rij �
�rj � ri�=2, and where the sum is taken over all the bonds
�ij� in the system. In the FIR regime, k � rij � 1, and
hence S2 ’ k

P
�ij��qije

ik��rij�ik̂ � rij� 	 k~S2. Conse-
quently, the contribution to the coupling coefficient from
correlated charges preserving local charge neutrality is
N�1hjS2j

2i ’ k2hj~S2j
2i / !2 (assuming linear dispersion),

where the function hj~S2j
2i � const�O�k2� depends on

precise structural details of the material but does not
depend on k in the FIR range. Therefore, we have demon-
strated that the frequency-independent part in Eq. (1) is due
to uncorrelated charge fluctuations, while the quadratic
frequency dependence results from correlated charge fluc-
tuations satisfying local charge neutrality.

The range of validity of Eq. (1) is restricted at high
frequencies by the requirement that the disordered modes
should have acousticlike character with linear pseudodis-
persion. Generally speaking, for ! * !IR, the disordered
modes contain many plane waves with a wave-vector
spread which is comparable with the mean value of k,
and the dispersion law becomes modified, showing, e.g.,
the onset of second sound for the longitudinal branch in
g-SiO2 [8]. This means that the frequency dependence of
C�!� can be modified in a nonuniversal manner for ! *

!IR, as we actually found for g-SiO2 and g-As2S3.
Dynamical polarization effects can also become significant
for ! * !IR [19]. Equation (1) is not restricted for low
frequencies if possible low-frequency anharmonic effects
are ignored [3].

In order further to support the form of the universal
frequency dependence of the FIR coupling coefficient
given by Eq. (1), we give the following evidence:
(i) experimentally derived data for C�!� in g-SiO2 and
g-As2S3, and numerical calculations of C�!� for
(ii) classical MD models of g-SiO2 with fixed charges
and for �-cristobalite (crystalline counterpart of g-SiO2)
with disordered charges and (iii) a DFTB MD model of
g-As2S3 and of its crystalline counterpart, orpiment, with
disordered Mulliken charges.

Experimental data for the FIR absorption coefficient
of spectrosil water-free g-SiO2 and ultrapure g-As2S3 at
room temperature have been obtained by THz TDS [20]
in the frequency range 1–130 cm�1 using a TeraView
TPI Spectra 1000 transmission spectrometer (experi-
mental details will be given elsewhere). Experimental
data for ��!� have been divided by the experimental
VDOS obtained from inelastic neutron scattering [10,11]
(see the insets of Fig. 1) and C�!� thus obtained is shown
in Fig. 1. Our data agree well with other experimental
FIR data obtained by THz TDS or other techniques [20–
24] and C�!� can be well fitted by Eq. (1) in the fre-
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quency range of its applicability (see the dashed lines in
Fig. 1).

We have also calculated C�!� for a classical MD model
of g-SiO2 [25] and a DFTB MD model of g-As2S3 [17]
(see the dot-dashed lines in Fig. 1). The classical MD
model of g-SiO2 has fixed atomic charges qSi � 2:4 and
qO � �1:2, and thus C�!� should not contain the
frequency-independent component, hjS1j

2i, and should be
proportional to !2 for !=2�c 	 ~! & ~!IR ’ 35 cm�1

solely due to positional disorder. This region, unfortu-
nately, is not available in our MD model due to prominent
finite-size effects below 50 cm�1. However, in the range
50–300 cm�1, we have found C�!� / !� with � ’ 2,
which can be due to the existence of a peak-shaped spectral
density and a linear pseudodispersion law in this frequency
range [8]. The DFTB MD model of g-As2S3 incorporates
both charge and positional types of disorder and thus can
show the crossover from a quadratic frequency dependence
to the plateau behavior with decreasing frequency (but this
is also unavoidably masked by finite-size effects for ~! &

20 cm�1) as seen in Fig. 2(b). Between the BP frequency,
~!BP ’ 15 cm�1 [12], and frequency 200 cm�1 we have
found C�!� / !�, with � ’ 1:7, which differs from that
found for g-SiO2 and might be due to nonlinear pseudo-
dispersion in this frequency range in g-As2S3 and possible
dynamic-polarization effects [19].

In order to unmask finite-size effects and reveal the role
of charge fluctuations in the frequency dependence of
C�!�, we argue that all the universal features of C�!�
can be seen in lattice models of corresponding crystalline
counterparts incorporating correlated and uncorrelated
charge disorder. Many properties of disordered systems

are rather similar to those of their crystalline counterparts
(see, e.g., [8,26]). C�!� shares such a similarity as well. In
order to see this, it is convenient to split the expression for
C�!� into incoherent (self-atom) and coherent (correlated-
atom) components, C�!� � Cincoh�!� � Ccoh�!�, where,
e.g., Cincoh�!� � C0

P
i�q

2
i =mi�e2

i �!�. These quantities,
calculated both for MD models of amorphous solids and
their crystalline counterparts, show striking similarities [cf.
the solid and dashed lines in Figs. 2(a) and 2(b)], which
suggests that the frequency dependence of C�!� in amor-
phous systems can be mimicked by introducing correlated
and uncorrelated charge disorder into crystalline systems
(see also [7]). Indeed, we have found that uncorrelated
disorder on its own, as expected, results in a frequency-
independent coupling constant (see the thin solid lines in
Fig. 3), the value of which depends on the variance of the
distribution of q1i, i.e. �2

1. Correlated disorder on its own
gives rise to the same frequency dependence (see the
dashed lines in Fig. 3) of C�!� found above the BP in
the MD models (cf. the dashed and solid lines in Fig. 3).
The slope of the curves does not depend on the variance,
�2

2, which influences only the intercept on the vertical axis.
Incorporation of both types of disorder (see the dot-dashed
lines in Fig. 3), with the plateau value coinciding with the
parameter A found from the fit of Eq. (1) to experimental
data, reveals rather well the frequency dependence of C�!�
found in the MD models above the BP (cf. the dot-dashed
and solid lines in Fig. 3). Such a fit allows the widths of the
distribution of uncorrelated charges, �1 �

����������������
A �m=C0

p
, to be

estimated, �1;SiO2
’ 0:06e and �1;As2S3

’ 0:12e; these val-
ues are in accord with those expected from the relative
ionicities of the two materials. Below 50 cm�1 (for
g-SiO2) and 20 cm�1 (for g-As2S3), the simulation data
are not reliable due to finite-size effects. However, extrapo-
lation to lower frequencies (larger sizes) is rather straight-
forward for lattice models with charge disorder. For
example, in the case of g-SiO2, the contribution from
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FIG. 1 (color online). Experimental TDS frequency depen-
dence of the absorption coupling coefficient in the FIR range
for (a) g-SiO2 and (b) g-As2S3 (solid lines). Other experimental
data from Ref. [20] (
), Ref. [24] (�), Ref. [23] (+) in (a) and
Ref. [22] (
) in (b) are shown for comparison. The dot-dashed
lines represent the numerical data obtained from MD models.
The dashed lines show the fits of the experimental data by Eq. (1)
with A � 4000 cm�2, B � 0:3 cm�1 for g-SiO2 and A �
1780 cm�2, B � 75 cm�1 for g-As2S3. The insets show the
VDOS used to extract C�!�. The dashed line in the insets
show the Debye VDOS, with the Debye temperature being
330 K for g-SiO2 and 164 K for g-As2S3.
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FIG. 2 (color online). (a),(b) Incoherent and (c),(d) coherent
contributions to the coupling coefficients for MD models of
g-SiO2 and �-cristobalite (a),(c) and of g-As2S3 and orpiment
(b),(d) to the total coupling coefficient (dot-dashed line). Solid
lines represent crystalline models and dashed lines are for glassy
ones.
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correlated charge fluctuations [the dashed line in Fig. 3(a)]
becomes insignificant below the BP in comparison with the
dominant frequency-independent contribution from uncor-
related charge fluctuations [the thin solid line in Fig. 3(a)
which should be extended to lower frequencies for larger
models]. Therefore, the sum of correlated and uncorrelated
charge fluctuations should result in a crossover to a plateau
for frequencies below the BP, i.e., as in the experimentally
observed behavior of C�!� (see Fig. 1).

In conclusion, we have presented an explanation for the
universal frequency dependence of the coupling coefficient
for far-infrared photons with atomic vibrations. The cou-
pling coefficient below the Ioffe-Regel crossover has two
components. One is frequency independent and is due to
uncorrelated static charge fluctuations caused by medium-
and long-range structural irregularities. This results in the
quadratic frequency dependence of the absorption coeffi-
cient frequently observed in disordered crystals and
glasses. The other contribution depends quadratically on
frequency and is caused by structural disorder on the short-
range (interatomic) scale, leading to static correlated
charge fluctuations obeying local charge neutrality within

structural units. For two glasses studied, g-SiO2 and
g-As2S3, we can conclude that, in g-SiO2, uncorrelated
charge fluctuations dominate through the whole frequency
range below the Ioffe-Regel crossover (or boson peak) and
result in a frequency-independent absorption coupling co-
efficient there. In contrast, in g-As2S3, uncorrelated charge
fluctuations are less pronounced and correlated charge
fluctuations preserving local charge neutrality become ap-
preciable even below the BP and thus the absorption cou-
pling coefficient exhibits an onset to an !2 dependence in
this frequency range.
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FIG. 3 (color online). Frequency dependence of C�!� for MD
models of �-cristobalite (a) and orpiment (b) with uncorrelated
(thin solid lines), correlated (dot-dashed lines), and both types of
charge disorder (dashed lines). The uncorrelated charges were
drawn from normal distributions with standard deviations,
�Si=qSi � �O=jqOj � 0:04 and �As=qAs � �S=jqSj � 0:06,
and zero means. The correlated charges were taken from a
normal distribution with mean values and standard deviations
of hq2i;Sii � 2:4, hq2i;Oi � �1:2, hq2i;Asi � 0:56, hq2i;Si �

�0:37 and �2;Si=hq2i;Sii � 0:6, �2;As=hq2i;Asi � 0:6. The random
values of q2i have been compensated by �q2i=Z placed on Z
nearest neighbors in order to maintain local charge neutrality.
The parameters of the distributions for uncorrelated charges
were chosen to fit the experimental data for the plateau value
[parameter A in Eq. (1)], and for correlated charges to fit the
frequency dependence of C�!� in the glassy MD models (solid
lines).
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