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Using large scale molecular dynamics simulations we investigate the properties of the nonaffine
displacement field induced by macroscopic uniaxial deformation of amorphous silica, a strong glass
according to Angell’s classification. We demonstrate the existence of a length scale � characterizing the
correlations of this field (corresponding to a volume of about 1000 atoms), and compare its structure to the
one observed in a standard fragile model glass. The ‘‘boson-peak’’ anomaly of the density of states can be
traced back in both cases to elastic inhomogeneities on wavelengths smaller than � where classical
continuum elasticity becomes simply unapplicable.
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The vibrational dynamics of glasses and, in particular,
the vibrational anomaly known as the ‘‘Boson peak’’, i.e.,
an excess of the low-energy density of state in glasses
relative to the Debye model, have attracted considerable
attention in condensed matter physics [1–3]. This anomaly
is observed in Raman and Brillouin spectroscopy [4,5] and
inelastic neutron scattering [6] experiments in many differ-
ent systems (polymer glasses [7], silica [8], metallic
glasses [9]) and the corresponding excitations are often
associated with heat capacity or heat conductivity low
temperature anomalies. Many interpretations of these vi-
brational anomalies have been put forward, and generally
involve some kind of disorder generated inhomogeneous
behavior [1], whose exact nature, however, is the subject of
a lively debate [2–5,10]. One related question is the pos-
sibility to determine a characteristic length in the vibration
modes responsible for the Boson peak in glasses [5].

In this work, we argue that the natural origin of the
vibrational anomalies in ‘‘fragile’’ as well as ‘‘strong’’
glasses lies in the inhomogeneities of the elastic response
at small scales, which can be characterized through the
correlation length � of the inhomogeneous or ‘‘nonaffine’’
part of the displacement field generated in response to an
elastic deformation imposed at the macroscopic scale. The
existence of such a length has been suggested in a series of
previous numerical studies [11–13] on two and three di-
mensional Lennard-Jones (LJ) systems, and is experimen-
tally demonstrated in macroscopic amorphous solids
(foams [14], emulsions [15], granulars [16], etc.). At a
more microscopic level, evidence has been provided re-
cently by UV Brillouin scattering experiments on amor-
phous silica [17]. Being a natural consequence of the
disorder of microscopic interactions [12] the nonaffine
displacement field is responsible, in particular, for the
breakdown of Born-Huang’s formulation [18] for the pre-
diction of elastic moduli [11,19,20], and has recently been
studied theoretically by Lemaı̂tre et al. [20] and DiDonna
et al. [21].

In practice, however, it appears that the only practical
way to quantify this effect for a given material consists in
direct molecular simulations [11,12]. The present contri-
bution extends, for the first time, the numerical analysis to
a realistic model of an amorphous silica melt—a strong
glass according to Angell’s classification [22]. Our results
are compared to a previously studied fragile reference glass
formed by weakly polydisperse LJ particles in 3D [13].
Strong and fragile systems have very different molecular
organization and bonding. Although the intensity of vibra-
tional anomalies is less important in fragile systems, it is
well documented in experiments [7] on polymer glasses or
in simulations of Lennard-Jones systems [23]. The obser-
vation of common features points to a universal framework
for the description of low frequency vibrations in glassy
systems. One recent finding of particular interest is that, in
these LJ systems, the Boson-peak anomaly appears to be
located at the edge of the nonaffine displacement regime,
its position given by the frequency associated with � [12].
This begs the question whether this is a generic result
applying also to other glasses, specifically to strong glass
forming materials such as amorphous silica, which is char-
acterized by an intricate local packing [23]—believed
widely to be the specific origin of the vibrational anomaly
[2]. As in our earlier contributions, we will focus on the
analysis of the nonaffine displacement field obtained in the
linear elastic strain regime and the eigenmode density of
states for systems at zero temperature or well below the
glass transition.

The amorphous silica was modeled using the force field
proposed by van Beest et al. [24]. (For details about this
‘‘van Beest–Kramer–van Santen (BKS)’’ potential; see
Refs. [25].) We performed classical NVT molecular dy-
namics simulations of systems containing N � 8016,
24 048, and 42 000 atoms with density � � 2:37 g=cm3,
in fully periodic cubic cells with sizes L � 48:3, 69.6, and
83.8 Å, respectively. The short ranged part of the BKS
potential was truncated and shifted at a distance of 5.5 Å.
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For the Coulomb part we used the Ewald method with a
real-space sum truncated and shifted at 9 Å [26]. To obtain
the silica glass, we first equilibrated all systems at T �
5000 K during 0.8 ns. An ensemble of three independent
configurations was studied for each system size [27]. Next,
we performed a quench from T � 5000 K to T � 0 K by
decreasing linearly the temperature of the external heat
bath with a quench rate of 1:8 K=ps [25]. Finally, a con-
jugate gradient algorithm was used to minimize the poten-
tial energy of the systems yielding T � 0 K configurations
with hydrostatic pressure hPi � 0:4 GPa. The static prop-
erties were checked against published results obtained with
the same amorphous silica model [25].

We now describe briefly the protocol used in order to
investigate the elastic behavior at zero temperature of the
model glasses under uniaxial deformation (for more de-
tails, see Refs. [11,12]). The procedure consists of applying
a global deformation of strain jj�xxjj � 1 to the sample by
rescaling all coordinates in an affine manner. Starting from
this affinely deformed configuration, the system is relaxed
to the nearest energy minimum, keeping the shape of the
simulation box constant. The relaxation step releases about
half of the elastic energy of the initial affine deformation
and results in the displacement �u�r� of the atoms relative
to the affinely deformed state, defining the nonaffine dis-
placement field. A typical field for a silica glass is pre-
sented in Fig. 1, where a 2D projection of �u�r� in the
plane containing the applied deformation direction is
shown.

This procedure allows us to measure directly the elastic
coefficients from Hooke’s law [11], i.e., from the stress
differences ������

end
����

ref
��, �ref

�� being the total stress
tensor of the reference state configuration (quenched
stresses), and �end

�� the one measured in the deformed con-
figuration after relaxation. From the resulting values of the
Lamé coefficients � � ��yy=�xx and 	 � ���xx �
��yy�=2�xx one obtains the associated transverse and lon-
gitudinal sound wave velocities, CT �

����������
	=�

p
, CL ��������������������������

��� 2	�=�
p

. In the case of the silica glass (� �
34:4 GPa, 	 � 37:2 GPa, CT � 3961:4 m=s, CL �
6774:5 m=s), these quantities are in good agreement with
data from Horbach et al. [25] and Zha et al. [28] (for silica
under a density of 2:2 g=cm3, taking into account the
scaling factor �2:37=2:2�1=2 [25] inherent to the choice of
a higher density).

The linearity of the strain dependence of both the dis-
placement field and the stress difference ���� have been
verified explicitly following Ref. [12]. The elastic (revers-
ible) character of the applied deformation is checked by
computing the remaining residual displacement field after
removing the external strain [12]. An alternative quantifi-
cation of the plastic deformation is obtained by considering
the participation ratio Pr � N�1�

P
i�u

2
i �

2=
P
i��u

2
i �

2 of the
noise �u�r� [12]. As long as Pr � 1, all atoms are involved
in the nonaffine field, while irreversible plastic rearrange-
ments are marked by Pr! 0, with only a few particles
involved. A choice of �xx � 10�7 for the LJ glass with L �
56� and of �xx � 5:10�3 for the silica glass were found to
ensure reversible and linear behavior, with 20%<
Pr<30% and 25%< Pr<40%, respectively [29].

Visual inspection of the snapshot suggests that the field
is strongly correlated over large distances, with the pres-
ence of rotational structures previously observed in
Ref. [12] for LJ systems [30]. In order to characterize
this kind of structure, we normalize the field by its second
moment, i.e. �u�r�� �u�r�=h�u�r�2i1=2. In this way, in
the linear elastic regime, it becomes independent of the
applied strain and the system size [21].

Next, we study the Fourier power spectrum of the
fluctuations of this normalized field. This spectrum
can be described by two structure factors, SL�k� �
hjj
PN
j�1 k 	�u�rj� exp�ik 	 rj�jj

2i=N relative to the longitu-
dinal and ST�k� � hk

PN
j�1 k^�u�rj� exp�ik 	 rj�k2i=N

relative to the transverse field component [12]. These
quantities are plotted in Fig. 2 as a function of the wave-
length � � 2
=k, where k � kk̂ � �2
=L��l;m; n� with k̂
being the normalized wave vector. Brackets h	i denote an
average over the degeneracy set associated with �, and
over an ensemble of configurations. As expected from our
study of LJ glasses [12], the longitudinal power spectrum
of silica is always smaller than the transverse one. The
main difference between the two materials resides in the
hierarchical progression of the decoupling between trans-
verse and longitudinal contributions at short wavelengths

FIG. 1. Inhomogeneous part �u�r� of the displacement field
u�r� for the imposed macroscopic uniaxial strain in elongation
�xx � 5
 10�3 for a silica glass containing N � 42 000 parti-
cles (L � 83:8 �A). Projection of the field is done on the (x� z)
plane for all particles with position r close to the plane. The
arrow length is proportional to �u�r� and scaled by a factor of
150. The field resides in the linear elastic regime, i.e., has a
magnitude varying linearly and reversibly with the applied
deformation. As visual inspection shows, it is strongly spatially
correlated and involves a substantial fraction of all atoms.
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that appears in the case of the silica glass (the spectra of LJ
systems being only weakly wavelength dependent). This
can be traced back to the local structure of silica which is
represented by arrows giving the positions of the n first
neighbor shells r�n�

f���g, where n 2 �1; 4� and ��;�� 2
fSi;Og. Structural effects disappear at distances greater
than 4–5 tetrahedral units SiO4, i.e. r�4�5�

f���g with � 2
fSi;Og, and the longitudinal contribution to the nonaffine
displacement field becomes then about 10 times smaller
than the transverse one—similar to our finding for LJ
systems [12,31].

We conclude that the nonaffine displacement field is of
predominantly rotational nature in both fragile and strong
glasses, and proceed to extract a characteristic length
representative of this rotational structure. Considering the
coarse-grained field Uj�b� � N�1

j
P
i2Vj �u�ri� of all Nj

particles contained within a cubic volume element Vj of
linear size b, we compute the coarse-graining function
B�b� � hUj�b�

2i1=2
j . As shown by Fig. 3, we find for both

glasses an exponential decay, well fitted by the character-
istic scales � � 23� for the fragile glass, and � � 33 �A,
i.e., near 23
 r�1�

fSi�Og for the strong glass. The latter length
scale has also been indicated in Fig. 2. The exponential
behavior becomes more pronounced with increasing sys-
tem size (not shown) which reduces the regime of the
cutoff observed at large b=L � 1, which is expected
from the symmetry of the total nonaffine field. [B�b� ! 1
for b! 0 due to the normalization of the field.]

The existence of such a characteristic length scale has
already been underlined in Ref. [12] for the LJ system, and

has been related to the position of the Boson peak in the
density of vibrational states. In order to test this assump-
tion in the case of the silica glass, we computed the vibra-
tional density of states (VDOS) g��� using the Fourier
transform of the velocity autocorrelation function [25],
calculated during 1.6 ns at T � 300 K (followed after a
run of 8 ns to assure equipartition of the kinetic energy at
this temperature). The VDOS is shown in the inset of the
Fig. 4, and is in good agreement with results from
Ref. [25]. In the main part of Fig. 4, reduced units x �
�
 �=CT are used in order to plot the excess of vibrational
states according to Debye’s continuum prediction, i.e.
g�x�=gDebye�x�, with � the previous characteristic length
scales and CT the sound velocities for transverse waves, for
LJ and silica glasses. (The Debye prediction must obvi-
ously become correct for small eigenfrequencies. To access
this frequency range even larger simulation boxes are
needed.) This plot confirms the fact that the Boson-peak
position can be well approximated by the frequency asso-
ciated with the correlation length � of elastic heterogenei-
ties in both LJ and silica glasses.

In summary, we have demonstrated the existence of
inhomogeneous and mainly rotational rearrangements in
the elastic response to a macroscopic deformation of amor-
phous silica. Our results are similar to the ones obtained
previously for LJ glasses. The characterization of the non-
affine displacement field demonstrates the existence of
correlated displacements of about 1000 particles corre-
sponding to elastic heterogeneities of characteristic size
� of 20 interatomic distances. The estimate of the fre-
quency associated with this length is in good agreement
with the Boson-peak position. The existence of such a
characteristic length in glasses should encourage to view
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FIG. 3. Amplitude of the coarse-graining function B�b� of the
normalized nonaffine field averaged over a volume element of
lateral size b, versus the ratio b=L, for LJ and silica (squares)
systems under uniaxial elongation. Since the total displacement
is zero by symmetry B�b� must necessarily vanish for large b �
L (‘‘sum rule’’). For sufficiently large system sizes, which allow
probing a broad �=L� b=L� 1 region, our data demonstrates
an exponential decay with characteristic length scale � � 23�
for LJ and � � 33 �A for silica glasses.
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FIG. 2 (color online). Squared amplitudes of the quantities
SL�k� and ST�k� (see text) for the longitudinal (bottom) and
transverse contributions to the normalized nonaffine field �u�r�
of silica glass at T � 0 K under macroscopic elongation, plotted
vs the wavelength � � 2
=k (in Å). The various system sizes
included demonstrate a perfect data collapse. The transverse
contribution is more important for all wavelengths. The spectra
become constant for large wavelengths with a relative amplitude
of about 10. The spectra for a LJ glass (circles, wavelength given
in beads diameters) have been included for comparison [31].
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the Boson peak as a length—rather than a frequency—
marking the crossover between a regime where vibrations
in glasses with wavelengths larger than � can be well de-
scribed by a classical continuum theory of elasticity, and a
small wavelength regime where vibrations are strongly
affected by elastic heterogeneities.

In a nutshell, the vibrational anomaly is therefore simply
due to physics on scales where classical homogeneous
continuum elastic theories (such as the Debye model)
must necessarily break down. This leaves unanswered the
important question what additional excitations are probed
that produce the peak but suggests a similar description for
different glass formers. Interestingly, the existence of a
length scale of comparable magnitude accompanying the
glass transition of liquids as been demonstrated very re-
cently [10]. This (dynamical) length characterizes the
number of atoms which have to move simultaneously to
allow flow just as our (static) length � describes the corre-
lated particle displacements. Since the glass structure is
essentially frozen at the glass transition both correlations
may be closely related, possibly such that the nonaffine
displacements might be shown in future work to be remi-
niscent of the dynamical correlations at the glass transition.

Computer time was provided by IDRIS, CINES, and
FLCHP.
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FIG. 4. Inset: VDOS g��� for the silica glass at T � 300 K.
Main figure: Excess of vibrational states g�x� compared to
Debye’s continuum model gDebye�x�, using reduced units x �
��=CT , with CT � 4:2 (in LJ units) and CT � 3961:4 m=s for
LJ and silica, respectively, and � as indicated in the figure. The
Boson-peak position at x � 1 is well approximated by the
frequency associated with the wavelength of order �. As ex-
pected, the peak is more pronounced for the strong glass.
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