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The deformation and breakup of a drop in an immiscible equiviscous liquid undergoing unbounded
shear flow has been extensively investigated in the literature, starting from the pioneering work of Taylor.
In this Letter, we address the case of microconfined shear flow, a problem which is relevant for
microfluidics and emulsion processing applications. The main effects of confinement include complex
oscillating transients and drop stabilization against breakup. In particular, very elongated drop shapes are
observed, which would be unstable in the unbounded case and can be explained in terms of wall-induced
distortion of the shear flow field. We show that wall effects can be exploited to obtain nearly monodisperse
emulsions in microconfined shear flow.
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The deformation and breakup of a droplet in a continu-
ous immiscible liquid phase under microconfined flow is a
subject of growing interest in several applications.
Examples are microfluidics technologies and emulsion
processing [1]. In spite of its relevance, the current under-
standing of the effects of confinement on drop deforma-
tion, even in well-controlled flow fields, is rather limited,
and the design issues concerning drop rheological behavior
in microdevices are often addressed on an empirical basis
[2]. In fact, starting from the pioneering work of Taylor [3],
most of the literature on flow-induced drop deformation is
devoted to the unbounded flow situation. The classical
fluidodynamic problem investigated by Taylor is given by
an isolated drop in a simple shear flow field, where the only
intrinsic length scale is the undeformed drop radius a. In
such a case (and with the further assumptions of Newtonian
fluids and no surface active agents), the two nondimen-
sional parameters governing drop shape and stability are
the ratio of shear and interfacial stresses, expressed by the
capillary number Ca � a� _�=�, where � is the continuous
phase viscosity, _� is the shear rate, and � is the interfacial
tension, and the viscosity ratio � between drop and con-
tinuous phase.

From the experimental side, Taylor analysis applies
when the drop is located far enough from the confining
surfaces of the flow device, so that the flow field can be
taken, in fact, as unbounded. If such a condition is not
satisfied, wall effects are known to influence the flow
behavior of nearby drops. Thus, wall effects were found
to elicit drop migration toward the center plane of a shear
flow cell [4]. Experimental results of migration velocity
[5,6] have been compared to predictions from small defor-
mation theory [5,7] and to numerical simulations [8], and
good agreement was found, except when the drop is in
close proximity to the wall and for large values of �.

More recently, an intriguing droplet-string transition has
been found in concentrated polymer blends at a viscosity
ratio of one when the size of the droplets becomes compa-

rable to the gap width between the shearing surfaces [9].
The transition was observed by shearing the sample be-
tween two parallel quartz disks and looking at the drops
along the velocity gradient through stroboscopic optical
microscopy. The strings are formed as a result of drop
alignment into pearl necklace structures followed by drop
coalescence, possibly due to wall-induced distortion of the
velocity field. The effect of viscosity ratio on structure
development, including coalescence and breakup, has
also been addressed [10]. From the theoretical point of
view, the hydrodynamic interaction between a drop in
shear flow and the two confining walls has been analyzed
at small deformations [11], but no comparison with experi-
mental data has been presented so far. More recently,
numerical simulations on two-dimensional wall-bounded
shear flow of drop suspensions have been presented [12];
the consequences of dropping the third dimension, how-
ever, are not completely known. It so appears that a clear
picture of drop deformation in confined shear flow is still
lacking. In particular, no detailed information on the
breakup dynamics is available. In this Letter, we report
on the first systematic investigation of these issues at a
viscosity ratio of one by using a high precision sliding plate
device and show possible implications for operations in-
volving microconfined shear flow.

The drops are observed along the vorticity direction of
shear flow by using as parallel plates a couple of glass bars
of square section (100 mm� 50 mm� 50 mm) [13].
Parallelism between the two plates is adjusted by a set of
micrometric rotary and tilting stages (the residual error is
around 20 �m over a length of 10 cm). Shear flow at a
constant shear rate _� is obtained by translating one of the
plates at a constant speed with respect to the other through
a computer-controlled motorized translating stage with
micrometric precision setting. The microscope itself is
also mounted on a separate motorized translating stage,
which is used to keep the deforming drop within the field of
view during motion. All the experiments are performed at
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room temperature in a thermostated room. Isolated drops
(with radius a ranging from 50 to 200 �m) are injected in
the continuous phase, preliminarily loaded between the
parallel plates, by a tiny glass capillary, fixed to a micro-
manipulator for precise positioning. The drops are located
in the middle of the gap between the sliding plates, and
about halfway from the top and bottom glass slides to avoid
further wall effects from these surfaces.

The continuous phase is a polybutene liquid exhibiting a
fairly Newtonian behavior in the range of shear rates
investigated (0:01–0:03 s�1), with a viscosity of 83 Pas
at room temperature and negligible first normal stress
difference. The drop phase is prepared by mixing
Newtonian silicone oils of different molecular weight in
such proportions to match the polybutene viscosity. The
interfacial tension of the pair of liquids is measured by a
standard experimental procedure based on Taylor theory
[14], and is 2:4 mN=m. Drop shape parameters, such as the
axes L and B in the shear plane and the deformation
parameter D � �L� B�=�L� B�, are measured by image
analysis techniques (L and B are calculated as twice the
maximum and minimum distance, respectively, between
drop center and contour). Finally, buoyancy effects on the
injected drop are found to be negligible on the time scale of
the experiments, due to the high viscosities and the small
density difference between the two liquids (ca.
0:08 g=cm3) [9,10].

The experiments are started with an initial setting of the
gap h between the confining plates high enough that no
significant wall effects are anticipated. Several shear flow
runs are then carried out at increasing values of _� (from
one run to the other, the drop is allowed to retract back to
the spherical shape at rest). This shear rate sweep is iterated
at progressively lower gap settings by reducing the distance
between the parallel plates (while maintaining the drop in
the center of the gap) through a micrometric translating
stage. The nondimensional gaps a=h investigated in this
work range from 0.07 to 1 (the latter corresponds to the
case of drop diameter twice the gap size). Images and
deformation data from two representative runs at Ca �
0:4 and nondimensional gap a=h � 0:07 and 0.5 are shown
in Fig. 1.

In the upper panel of Fig. 1 images taken at different
times are presented for each run. The left sequence, which
is referred to a=h � 0:07 (h � 940 �m), shows the typical
shapes that are observed in the absence of wall effects.
Starting from the spherical configuration at rest (1), the
drop becomes more deformed and oriented in the flow
direction (2)–(4) until a steady state shape is reached (5).
Upon cessation of flow, drop deformation is relaxed (6)
towards the equilibrium spherical shape. A striking differ-
ence in shape is found in the right image sequence, which
corresponds to a=h � 0:5 (h � 345 �m; the walls have
been highlighted in the images for the sake of clarity). In
this case, starting again from the spherical configuration

(1), the steady state shape (5) is not attained monotonically,
but drop deformation and orientation go through maxima
(3) and minima (4) in a damped oscillatory fashion.
Furthermore, at a=h � 0:5 the deformed drop is not ellip-
soidal, as in the ‘‘unconfined’’ flow case (a=h � 0:07), but
exhibits sigmoidal shapes, with pointed ends in the startup
transient (2). As before, once the flow is stopped, drop
relaxation towards the spherical configuration is observed,
though with different retraction shapes (6). A quantitative
representation of this trend is displayed in the bottom panel
of Fig. 1, where the nondimensional drop axis L=2a is
plotted as a function of the nondimensional time �t (given
by the actual time multiplied by the shear rate _�). For the
sake of comparison, L=2a versus time at a=h � 0:07 is
shown in the inset in Fig. 1. It can be noticed that the
stationary value of L=2a is almost 1.7 times higher when
a=h � 0:5 as compared to the unconfined case. In other
words, the higher the confinement, the more extended is
the drop shape at steady state. Furthermore, apart from the

FIG. 1. Transient drop deformation at Ca � 0:4 and a=h �
0:07 (left sequence) and 0.5 (right sequence) as observed along
the vorticity direction in a parallel flow apparatus. The viscosity
ratio � is equal to unity within experimental error.
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complex transient behavior, which is missing for a=h �
0:07, the two cases differ in the time scale required to reach
steady state conditions, which is an order of magnitude
higher at a=h � 0:5. We found indeed that, at a given value
of a=h, the startup transients became slower and slower
with increasing Ca until it was not possible anymore to
reach steady state within the total travel allowed by the
apparatus.

In the small to moderate deformation regime, analytical
expressions of drop deformation in confined shear flow
have been derived by Shapira and Haber [11] based on
Lorentz’s reflection method. The resulting first-order cor-
rections for wall effects show that drop shape, as calculated
by Taylor [3], is not altered with respect to unbounded
shear flow, only the magnitude of deformation is increased.
A comparison of these predictions for two-wall effects
with experimental data, which is not available at present
in the literature, is here presented in Fig. 2, where the
deformation parameter is plotted as a function of a=h for
Ca � 0:1, 0.2, and 0.3.

As shown before, at each value of Ca, drop deformation
increases with a=h, i.e., by reducing the gap between the
plates. As a matter of fact, the agreement between theory
and predictions is remarkable, especially at the lower
values of Ca, where small deformation theory is expected
to hold. The corresponding stationary drop shapes for
Ca � 0:1 are shown in the upper panel in Fig. 2, and it is
interesting that even at the higher values of a=h, where
distortions from the quasiellipsoidal shape are clearly vis-
ible, the agreement with theory is still quite satisfactory.
This behavior is in line with the finding that Taylor pre-
dictions for D are in good agreement with experimental
data up to drop deformations well beyond the range of
validity of the small deformation theory, even though the

observed drop shape is quite different from the predicted
one [14]. The Shapira and Haber predictions are still in
good agreement with data at values of Ca � 0:2 and 0.3,
except when the drop gets too close to the wall (see the last
point at a=h � 0:5), where the reflection analysis is ex-
pected to fail.

As a consequence of the increased drop deformation at
reduced gap size, highly elongated shapes, which would be
unstable in the unbounded case (see next paragraph), are
observed at steady state in confined shear flow. Further-
more, the deformed drop is more oriented along the flow
direction in the latter case. These trends are emphasized
when drop diameter is greater than gap size (i.e., when
a=h > 0:5). The stabilization of elongated drop shape can
be explained in terms of wall-induced distortion of the
shear flow field. Small wall separations, indeed, increase
the amount of rigid-body rotation in the flow with respect
to simple shear and thus result in nearly closed flow
streamlines. We have performed boundary-integral simu-
lations [data not shown, see [15] for details] that demon-
strate that this confines the droplet to rotating within the
closed streamlines, in contrast to the no-wall case, in which
shear flow streamlines are open and droplet deformation
can be unbounded thus leading to breakup. The major
consequence of this phenomenon is that higher droplet
deformations are stable and breakup is hampered.

Another remarkable aspect of confined drop deforma-
tion is related to the critical behavior at breakup. We found
that both the critical capillary number and the breakup time
are somehow increased with respect to the unbounded
case. An example is shown in Fig. 3, where selected images
illustrating drop shape evolution with time are presented at

FIG. 2. Comparison between experimental data and the pre-
dictions of Shapira and Haber [11] at Ca � 0:1, 0.2, and 0.3.

FIG. 3. Drop breakup dynamics at Ca � 0:46 and a=h � 0:7
(top sequence, scale bar � 100 �m) and Ca � 0:5 and a=h � 1
(bottom sequence, scale bar � 150 �m).
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Ca � 0:46 for a=h � 0:35 (top sequence) and Ca � 0:5
and a=h � 0:5 (bottom sequence). In the slightly super-
critical conditions at Ca � 0:46 of the top sequence in
Fig. 3, the breakup dynamics is characterized by drop
elongation followed by pinch-off at the ends of the neck
region (at L=2a � 6). The fragments generated upon
breakup are three main daughter drops and two minor
satellites in between them (image 5). An interesting feature
of this breakup mode is that the central daughter drop is
just slightly different (5% in radius) than the two daughter
drops at the ends. Such behavior is at variance with the
unbounded case, where the central fragments are smaller
than the two main daughter drops at the ends. This suggests
that confined shear flow could be exploited to generate
quasi monodisperse emulsions by controlled breakup
under near critical conditions. It can be noticed that the
capillary number in the top sequence in Fig. 3 is slightly
higher than the critical value for breakup in unbounded
shear flow at � � 1, which is ca. 0.43 [16]. The nondimen-
sional breakup time, however, is more than twice the
corresponding value for unbounded flow [17], thus con-
firming the slowing down of drop deformation kinetics
induced by microconfined flow. Furthermore, the nondi-
mensional drop axis at breakup is also higher than the
corresponding value in unbounded shear.

The effect of confinement becomes more pronounced
when drop diameter approaches gap size. At a=h � 0:5,
the deformed drop tends to a stable stationary shape, fol-
lowing a transient with damped oscillations, still at Ca �
0:48, which would correspond to a supercritical condition
(i.e., leading to breakup) in unbounded shear. At Ca � 0:5,
as in the bottom sequence of Fig. 3, no oscillations are
observed since the drop keeps elongating up to a point
where pinch off takes place (at L=2a � 10). The conical
neck left behind retracts forming a bulbous part, where a
further breakup event takes place. This is a common be-
havior in free-surface flows, such as jet breakup [18]. The
breakup time, which is ca. 65, is more than 3 times higher
compared to the value for unbounded flow at the same
value of Ca [ca. 20, [17] ]. Overall, nine fragments are
generated upon breakup, including two larger daughter
drops, three main, and four smaller satellites (image 5). It
so appears that, at a given Ca, breakup occurs at a higher
elongation and at longer times in the confined case due to
the stabilizing effect of the walls, thus generating more
fragments compared to unbounded flow.

In conclusion, we have described deformation and
breakup of an isolated drop undergoing two-phase confined
shear flow in a precision sliding plate apparatus at a vis-
cosity ratio of one. Wall effects act to stabilize elongated
drop shapes, which would be otherwise unstable in the
unbounded case, by confining the drop to rotate within

closed streamlines. This feature could be relevant for the
production of elongated microstructures, which is an im-
portant technological issue in several applications, such as
food processing, where the particle shape can be ‘‘frozen’’
by gelation. Another possible application of the results
shown in this work is the generation of quasimonodisperse
emulsions by controlled breakup of fluid droplets. By
proper selection of flow geometry and fluid properties,
daughter droplets of similar size can be obtained by
breakup close to the critical conditions.
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