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Pattern Formation in Taylor-Couette Flow of Dilute Polymer Solutions:
Dynamical Simulations and Mechanism
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We report spatiotemporal pattern formation in Taylor-Couette flow (i.e., flow between rotating
cylinders) of viscoelastic dilute polymer solutions obtained for the first time from first-principles
dynamical simulations. Solution structures with varying spatial and temporal symmetries, such as rotating
standing waves, flames, disordered oscillations, and solitary vortex solutions which include diwhirls
(stationary and axisymmetric) and oscillatory strips (axisymmetric or nonaxisymmetric), are observed,
depending on the ratio of fluid relaxation time to the time period of inner cylinder rotation. The flow-
microstructure coupling mechanisms underlying the pattern formation process are also discussed.
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Understanding the flow-microstructure coupling leading
to nonlinear pattern formation in viscoelastic fluids is of
fundamental and technological interest. For instance, such
knowledge can be used advantageously in the design and
control of polymer processing operations allowing for
higher throughput and high product quality, polymer-
induced turbulent drag reduction, i.e., the dramatic reduc-
tion of turbulent skin friction obtained by the dissolution of
minute amounts of high molecular weight polymers, and
advanced materials synthesis (e.g., polymer-clay compo-
sites). Moreover, a series of flow transitions could be
induced by the nonlinear coupling between flow and con-
formation, leading to phenomenon such as elastic turbu-
lence [1], i.e., chaotic flows with spectral energy transfer
realized in the absence of inertia. Specifically, it is well
known that viscoelastic shear flows with curved stream-
lines are prone to instabilities even in the absence of inertia
due to the development of hoop (normal) stresses. The
primary elastic instability mechanism was originally estab-
lished by Larson, Shaqfeh, and Muller [2] for the Taylor-
Couette flow (TCF), i.e., the flow generated within the gap
of concentric cylinders (with length >> gap width) by the
rotation of the inner cylinder, via a linear stability analy-
sis using a model that mimics the rheology of a highly
elastic, constant viscosity dilute polymer solution (Boger
fluid) used in their experiments. Since then, as in the
Newtonian fluid mechanics literature, TCF has served as
a paradigm for investigations of elastic instabilities and
pattern formation. Experimental investigations of pattern
formation in viscoelastic TCF have uncovered a variety of
intriguing flow transitions, including rotating standing
waves (RSW), disordered oscillations (DO), and solitary
vortex solutions which can be time dependent [oscillatory
strips (OS)] or time invariant [diwhirls (DW)] [3].
However, to date, theoretical investigations have been
limited to weakly nonlinear analysis [4] or computation
of axisymmetric steady states [5]. This has limited the
understanding of the mechanisms of flow-microstructure
coupling underlying the pattern formation process, which,
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as shown by experiments, inherently includes creation or
destruction of spatial (i.e., axisymmetry vs nonaxisymme-
try, periodicity in the direction of the cylinder axis) and
temporal (i.e., stationary, time periodic, or disordered)
symmetries which can be captured only by means of a
fully three-dimensional dynamical simulation. In this
Letter, we report, for the first time, the principal findings
of such dynamical explorations and discuss the pattern
formation mechanisms.

The ratio of inertial to elastic forces plays an important
role in polymer solution flows. This ratio is referred to as
the elasticity number, £ = We/Re, where Re and We
denote the Reynolds (ratio of inertial to viscous forces)
and Weissenberg (ratio of fluid relaxation time A to the
inverse of the characteristic shear rate ) numbers, respec-
tively. In the limit as £ — oo and under isothermal con-
ditions [6], the base unidirectional Couette flow becomes
unstable to a nonaxisymmetric and time-dependent state
when the parameter K = We?(1 — 8)(d/R;) exceeds an
O(1) critical value where d = R, — R, R, and R, corre-
spond to the inner and outer cylinder radii, respectively,
and S is the solvent to the solution viscosity ratio. The
above result has been verified experimentally by Groisman
and Steinberg [3], who also provided detailed experimental
reports of a variety of patterns that emerge in the postcrit-
ical regime. These elastically induced flow patterns, iden-
tified as RSW, DO, OS and DW, form for a wide range of
conditions ranging from inertia-dominated (E <1) to
elasticity-dominated (E >> 1) flows. While the disordered
oscillations have been closely associated with the phe-
nomenon of “elastic turbulence’ [1], the stationary, axi-
symmetric, and spatially localized coherent structures
referred to as ““diwhirls” [3,7] could exist even below the
We threshold of stability of the base Couette flow predicted
by linear stability analysis. Experiments [3] suggested that
flows resulting from the evolution of finite-amplitude per-
turbations (which cannot be accounted for by linear sta-
bility analysis) could exhibit spatial features of DW.
Independent experiments by Baumert and Muller [8]
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have shown patterns such as flames made up of DW-like
coherent structures to exist at low and high E values.

Direct computation of the viscoelastic flow patterns has
remained a formidable challenge due to algorithmic and
computational bottlenecks [9]. Kumar and Graham [5]
computed axisymmetric and stationary solutions of the
DW type by tracing out stationary branches in the purely
elastic (E — o) Couette-Dean flow using 2D steady state
calculations and provided a self-sustaining mechanism that
supports the DW structure. Recently, we have developed
and extensively validated an efficient, fully spectral, three-
dimensional, parallel algorithm, based on the modification
of the operator splitting, diffusive-stress formulation used
in direct numerical simulation of viscoelastic turbulent
flows [10], for the computation of nonaxisymmetric and
time-dependent viscoelastic flow structures [9]. It has been
shown that consistent with the results of local nonlinear
analysis [4], RSW (ribbon) and spiral patterns manifest for
We values slightly greater than the linear stability thresh-
old, We, [9]. In this study, we have employed this algo-
rithm to uncover TCF patterns for We > We_.. We have
used the FENE-P (finitely extensible nonlinear elastic-
Peterlin) constitutive equation to model the viscoelastic
stress. This model is inspired by polymer kinetic theory
and is based on a finitely extensible dumbbell realization of
a polymer chain in which the two Brownian beads are
connected by a nonlinear entropic spring. Despite its sim-
plicity, this model has been successfully used to predict
complex phenomena such as polymer-induced turbulent
drag reduction [10,11] as well as in the study of viscoelas-
tic coherent structures [5,12]. We choose d, d/(R,{),
R Q, p(R,Q)?, and npR,Q/d as scales for length, time,
velocity u, pressure p, and polymer stress 7, respectively,
where () denotes the inner cylinder angular velocity, p
represents the solution density, and the total solution vis-
cosity 7 is the sum of the solvent (7)) and polymeric (7p)
contributions. Further we scale the conformation tensor C,
which represents the ensemble average of the second mo-
ment of the end-to-end vector of the polymer chain, with
respect to kT /H, where k, T, and H denote the Boltzmann
constant, absolute temperature, and Hookean spring con-
stant, respectively. Then the dimensionless equations gov-
erning the motion of an incompressible FENE-P fluid can
be expressed as follows [13]:
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where 7 = {[(L?> — 3)/(L? — trace(C))]C — I}/We. Note
that trace(C) < L%, Re = pR,Qd/n, and We = AR,Q/d.

The equations are supplemented by no slip boundary con-
ditions at the walls.

We use a large value for L2 = 10000 and 8 = 0.8 for
which the solution has shear-independent viscosity as in
the case of the fluids used in experiments. Motivated by
experiments, we report results for a moderate value of £ =
1/3 and R,/R, = 0.8 for which computational cost is
reasonable (typical CPU time per run is several days on a
16 processor SGI Origin). For this case, linear stability
analysis predicts critical values of We, Re, a (axial wave
number scaled with respect to 1/d), and £ (azimuthal wave
number) as 11.44, 34.33, 4.4, and 1, respectively. First,
dynamical simulations are performed for We = 13 using
the initial condition constructed by the superposition of the
base Couette flow with suitably weighted eigenfunctions
obtained from linear stability analysis [9]. In discrete steps
between 0.5 and 5, we incremented We to a value of 30 and
subsequently decreased it from 30 to the linear stability
threshold by keeping E fixed at 1/3. We note that step size
has no effect on the flow states reported. Going upward or
downward in We at fixed elasticity number is equivalent to
increasing or decreasing the shear rate (or () in experi-
ments), since E is independent of 7 = R, /d. For each
We value, the simulations are performed for a sufficiently
long time [typically of O(100A)] and the final solution is
used as an initial condition to the simulation at the next We
value. The patterns are visualized by using space-time
plots for radial velocity (u,), which convey dynamical
information based on pointwise velocity data in Fig. 1.
The data are sampled at time intervals of 5A/We
[=5d/(R,£))] units along an axial (z) line passing through
the center of the computational domain, i.e., at r = (R +
R,)/2d and 6 = 7r. In gray scale, the dark and light regions
correspond to radial inflow and outflow regions, respec-
tively. In order to elucidate the flow-microstructure cou-
pling mechanisms, we also present the contour plots in the
r-z plane of u, and trace(C) in Figs. 2(a) and 2(b), respec-
tively. The RSW pattern in Fig. 1(a) is distinguishable from
its checkerboardlike feature that signifies alternating re-
gions of radial inflow (dark) and outflow (light) similar to
the ones observed in experiments [3]. The time periods of
the fluctuating radial velocity were found to be much
greater than the fluid relaxation time and were approxi-
mately 43X and 63X for We = 13 and 20 [see Fig. 1(a)],
respectively. In an ideal RSW a pair of counterrotating
vortices of equal sizes generates radial inflow and outflow.
However, a distinct asymmetry between the inflow and
outflow is visible in the RSW-like patterns shown in
Fig. 2(a). This radial asymmetry is reinforced further as
We is increased where the flow patterns appear as modu-
lated RSW [see Figs. 1(b) and 2(a)]. For We = 30, regions
of strong inflow become further accentuated in the radial
and azimuthal directions and the flow manifests as axisym-
metric strips of oscillating inflow regions or OS as shown
in Figs. 1(c) and 2(a). The inflow radial velocity in the OS
was found to oscillate at a frequency = 1/(5.63) within
an axial distance of 0.91 times the gap width. Small ran-
dom perturbations render the axisymmetric OS solutions
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FIG. 1. Space-time plots of radial velocity for (a) RSW,
(b) modulated RSW, (c) axisymmetric OS, (d) nonaxisym-
metric OS or flames, (e) DO, (f) axisymmetric OS, (g) axi-
symmetric and stationary DW, (h) diwhirl deteriorating phase,
and (i) transition to Couette flow.

unstable to disordered nonaxisymmetric OS at We = 30.
The oscillating inflow vortices appear as merging and
diverging strips as they are convected azimuthally and
axially and the merging or diverging events become more
regular and periodic when the We is decreased from 30 to
values of 28, 26, and 23 [Fig. 1(d)]. These are reminiscent
of the flame patterns reported in the experiments of
Baumert and Muller (see Figs. 26 and 10 in the two
references, respectively, of [8]) and also resemble the
coalescence of two solitary, localized coherent structures
of the stationary diwhirls [see Fig. 2(a)] observed in the
experiments by Groisman and Steinberg (see Fig. 6 in their
paper [7]). Decreasing We from 23 to 20 resulted in an
abrupt transition to a disordered flow as shown in Fig. 1(e),
whose irregular patterns are similar to those of experimen-
tally observed DO at relatively low elasticity numbers.
Sporadic occurrences of spiral- and ribbonlike patterns
are also seen in this flow regime. The power spectral
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FIG. 2. Final snapshot of r-z contour density plots at an
azimuthal point where radial inflow velocity is the maximum:
(a) radial velocity V, and (b) trace(C) for RSW (We = 20),
modulated RSW (We = 27), axisymmetric OS (We = 30),
flames (We = 23), DO (We = 20), and DW (We = 13). For
each r-z plot, 0 = z =<2, R, /d = r = R,/d.

densities of both the radial and axial velocity fluctuations
showed power-law decay behavior with an exponent of
—3. At We = 16, flow transitions into an axisymmetric,
oscillating, and solitary structure characterized by regions
of strong inflow [Fig. 1(f)]. Below We = 16, stationary
ringlike (axisymmetric) solitary, localized vortex pairs, or
DW emerge as shown in Fig. 1(g). In accord with experi-
mental findings [7], the DW dissipate and transition even-
tually into unidirectional Couette flow [see Figs. 1(h) and
1(1)] below We = 10, which is less than We,.

The maximum value of the radial velocity scaled with
respect to d/ A, denoted by V,, in the inflow of a DW is of
O(1) and occurs always at a radial position that is closer to
the outer cylinder. Moreover, the strong inflow regions are
always associated with large polymer extensions, signified
by large values of trace (C), as clearly evident from
Fig. 2(b). The dark regions in Fig. 2(a) correspond to
very intense inward flow in the middle of two vortices,
which together are shaped like a spindle [Fig. 3(a)], and the
major portion of the flow outside of the DW resembles
Couette flow. Flow streamlines in the DW for We = 13,
presented in Fig. 3(a), are strikingly similar to the sche-
matic of the flow lines reported from experiments (8 =
0.55, We = 10) [7] as well as computed [5] DW structures
in the purely elastic case (E >> 1). For the stationary
pattern at We = 13, the magnitude of the maximum inflow
velocity is 0.652d/A compared to 0.5d/A from laser
Doppler velocimetry measurements [7], and this is nearly
7 times the maximum outflow velocity [Fig. 3(b)]. The
axial span of the intense inflow is approximately 0.62d,
while the slower outflow extends nearly 2.75d on either
side of the inflow core. Corresponding inflow and outflow
axial widths reported in experiments [7] were 0.5d and
2.5d, respectively, which are in close agreement with the
above predictions that are obtained using a computational
domain with an axial height of 277d. Experiments [7] show
that when any two DW approach within an axial range of
5d, they tend to coalesce to form a single DW. This
coalescence feature was also exhibited by the flame pat-
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FIG. 3. (a) Flow streamlines in a diwhirl core for We = 13 and
(b) V, vs axial distance in the diwhirl core where V, is maxi-
mally negative for We = 13.

terns of Fig. 1(d) from the present study. In the inflow
regions, the mean azimuthal velocity, uy, exhibits a para-
bolic profile near the outer wall. The radial component of
the polymer body force, F, = [(1 — B)/ReV - 7],, shown
in Fig. 4, can be seen to be negative throughout the gap and
attains its maximum absolute value near the outer cylinder.
This body force, which is generated due to the flow-
induced stretching of the polymers, in turn sustains the
inward flow.

In summary, in this Letter, we have reported elastically
induced flow patterns such as RSW, modulated RSW,
axisymmetric OS, flames or nonaxisymmetric OS, DO,
and stationary axisymmetric DW computed via 3D time-
dependent simulations using a FENE-P model at an elas-
ticity number of 1/3. Since the solution elasticity E = 1/3,
there is a significant amount of inertia in the above dis-
cussed flows; however, the ratio Re/Re,, (Re is the critical
Reynolds number at which the base Newtonian Couette
flow becomes unstable to Taylor-vortex flow) is less than
unity (0.33 = Re/Re, = 0.95). Moreover, parametric
studies have shown that the solitary solution structures
(OS, DW) can be observed at similar We values even for
purely elastic flows (E — o). Hence, the pattern formation
reported here can be primarily attributed to elastic effects.
Slightly above the critical point predicted by linear stabil-
ity analysis RSW (ribbons), which are periodic in space
and time, manifest. Perturbation of RSW leads to asym-
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metry between the inflow and outflow regions. The macro-
molecular extension caused by such flows results in nega-
tive (inwardly acting) polymer body force, which in turn
reinforces the inflow regions leading to localized vortex
solutions with varying spatiotemporal symmetries. The
presence of localized coherent structures (DW, OS) with
pronounced radial inflow/outflow asymmetry is a common
feature exhibited by these flows as previously suggested by
the experiments of Groisman and Steinberg [3].
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