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We describe a technique that enables strong, coherent coupling between individual optical emitters and
guided plasmon excitations in conducting nanostructures at optical frequencies. We show that under
realistic conditions optical emission can be almost entirely directed into the plasmon modes. As an
example, we describe an application of this technique involving efficient generation of single photons on
demand, in which the plasmon is efficiently outcoupled to a dielectric waveguide.
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The fields of quantum computation and quantum infor-
mation science have spurred substantial interest in gener-
ating strong, coherent interactions between individual
quantum emitters and photons. Such a mechanism would
enable quantum information to be passed over long dis-
tances, which is essential for quantum communication
[1,2] and would facilitate the scalability of quantum com-
puters [3]. The required coupling between emitters and
photons is difficult but has been achieved in a number of
systems that reach the so-called ‘‘strong-coupling’’ regime
of cavity quantum electrodynamics [4,5]. Recently, several
approaches to reach this regime on a chip at microwave
frequencies have been suggested [6–9] and experimentally
observed [9]. A key feature of these approaches is the use
of conductors to reduce the effective mode volume Veff for
the photons, thereby achieving a substantial increase in the
coupling strength g / 1=

��������
Veff

p
. Realization of analogous

techniques with optical photons would open the door to
many potential applications in quantum communication
and in addition lead to smaller mode volumes and hence
faster interaction times.

This Letter describes a method that enables strong,
coherent coupling between individual emitters and elec-
tromagnetic excitations in conducting nanostructures at
optical frequencies, via excitation of guided plasmons
localized to nanoscale dimensions. The strong coupling
is possible due to the small mode volume associated with
this subwavelength confinement. We first examine the
simple case of a conducting nanowire, where the relevant
physical mechanisms can be understood analytically, and
then consider an optimized geometry of a metallic nanotip.
Because of dissipative losses in metals the plasmon modes
themselves are not suitable as carriers of information over
long distances. We show, however, that the plasmon exci-
tation can be efficiently outcoupled through evanescent
coupling with a nearby dielectric waveguide, as illustrated
schematically in Fig. 1. This can be used, e.g., to create an
efficient single-photon source, or as part of an architecture
to perform controlled interactions between distant qubits.
We find that single-photon efficiencies exceeding 95% are
possible using relatively simple implementations.

Surface plasmons [10] are bound, nonradiative electro-
magnetic excitations associated with charge density waves
propagating along the surface of a conducting object. For a
smooth, cylindrical nanowire, it is convenient to write the
fields in terms of cylindrical coordinates, Ej�r� �
Ej;m�kj?��e

im�eikkz, where j � 1; 2 denotes the regions
outside and inside the metal, respectively. The functions
Ej;m are determined by Maxwell’s equations along with
appropriate boundary conditions and are given in [11]. The
modes are characterized by the longitudinal component of
the wave vector kk, which is related to the free-space wave
vector k0 � !0=c, dielectric permittivity �j, and imagi-
nary transverse wave vector kj? � i�j? by �jk2

0 � k2
k
�

�2
j?. �j? is related to the inverse decay length of the field

away from the surface. The dependence of kk for a con-
ducting wire on its radius R is shown in Fig. 2(a), for a few
lowest order modes. Throughout this Letter, all figures and
numbers presented use the optical properties of silver
(�2 � �50� 0:6i) [12] at a vacuum wavelength �0 �
1 �m, and assume a surrounding dielectric �1 � 2.

For a conducting nanowire (j
�����
�i
p
jk0R� 1, Re�2 < 0),

there exists one fundamental TM mode [13,14] with axial
symmetry (m � 0), while all higher-order modes are cut
off. For this mode, kk, �j? � C�1=R, indicating that the
phase velocity vph / !0R is greatly reduced while the

FIG. 1 (color online). (a) An emitter coupled to a nanowire is
optically excited and decays with high probability into the
plasmon modes of the nanowire. A single-photon source is
created by evanescently coupling the nanowire to a nearby
dielectric waveguide over a length Lex. (b) A similar setup,
where a dipole emitter is coupled to a metallic nanotip that
expands to some final radius R and is then coupled to a dielectric
waveguide.
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transverse mode area Aeff / R
2 is localized to a region on

the order of the wire size. The proportionality constant C�1

depends only on �1;2 and is given by

 

�2

�1
�

2

��� log2� logC�1��C�1�
2 ; (1)

where � � 0:577 is Euler’s constant. This subwavelength
guiding of plasmons in metal nanowires has recently been
observed in a number of experiments [15–17].

At optical frequencies a conductor has finite losses
characterized by Im�2, resulting in dissipation of the plas-
mon wave at a rate given by Imkk. Because of the tighter
localization, Rekk=Imkk decreases and approaches some
nonzero value ( � 140) as R! 0, as shown in the inset of
Fig. 2(a) for the fundamental mode. Physically Rekk=Imkk
is proportional to the number of plasmon wavelengths the
plasmon will travel before decaying.

We now consider the emission properties near a nano-
wire of an oscillating dipole, which physically can be
formed by a single atom, a defect in a solid-state system,
or any other system with a dipole-allowed transition. This
dipole can generally lose its excitation radiatively by emit-
ting a photon, nonradiatively through dissipation of cur-
rents induced by the dipole in the metal, or into the guided
plasmon modes. It is well known that the corresponding
spontaneous emission rates can be obtained via classical
calculations of the fields [18]. For subwavelength systems
this calculation further simplifies because it is sufficient to
consider the quasistatic (H � 0) field solutions [19], the
derivation of which we outline here. Given a point charge
source at r0 outside the metal, we write the static potential
outside in terms of the free-space potential and a reflected
component, �0�r; r0� ��r�r; r0�, while �2�r; r0� gives the
potential inside the wire. Note that the potential due to a
dipole p0 at r0 is easily found from the point source

potential via �dip�r; r0� � �p0 � r
0���r; r0�. Since

�r;2�r; r0� are solutions to the Laplace equation, r2�r;2 �
0, we can expand �r in an appropriate basis,

 �r�r; r0� �
1

2�2�0

X1
m�0

�2� 	m;0� cosm����0�

	
Z 1

0
dh
m�h� cosh�z� z0�Km�h�

0�Im�h��;

(2)

where 
m�h� are arbitrary coefficients, and K, Im are
modified Bessel functions. A similar expansion holds for
�2, with the replacements 
m ! �m and Km ! Im.
Expanding �0 � �4��0�1jr� r0j��1 in a similar basis,
algebraic equations for 
m, �m result by requiring that
�0 ��r � �2 at the boundary and that �E? is continu-
ous here. The solution for 
m is found to be

 
m�h� �
1

�1

��2 � �1�I
0
m�hR�Im�hR�

�1Im�hR�K
0
m�hR� � �2Km�hR�I

0
m�hR�

: (3)

The radiative decay rate is determined by finding the
dipole contribution
 	p�r

4��1r3 to �dip;r � �p0 � r
0��r at large

distances r, which for a nanowire is due to the m � 1 term
in Eq. (2). Physically 	p corresponds to an induced dipole
moment in the nanowire, and leads to a modified radiative
decay rate �rad / jp0 � 	pj2. The nonradiative and plas-
mon decay rates can be calculated via �total / Im�p0 � E�,
where E � �r�dip�r; r0�jr�r0 is the total field at the dipole
location. In the limit that the distance d between emitter
and wire edge approaches zero, one finds that E diverges
due to a substantial contribution from the sum over m in
Eq. (2). This term is proportional to Im�2 and can thus be
identified with nonradiative decay. At the same time,
Eq. (3) exhibits a pole in 
0 that corresponds to excitation
of the fundamental plasmon mode, and whose contribution
to E yields the plasmon decay rate. For a nanowire, the
radiative and nonradiative decay rates for a dipole oriented
along �̂ are given by [19]

 �rad=�0 �

��������1�
�2 � �1

�2 � �1

R2

�R� d�2

��������
2
; (4)

 �non-rad=�0 �
3

16k3
0d

3�3=2
1

Im
�
�2 � �1

�2 � �1

�
; (5)

where �0 is the decay rate in uniform dielectric �1 [20],
while the plasmon decay rate is [21]

 �pl=�0 � 
pl
K2

1��1?�R� d�


�k0R�3
: (6)


pl is a complicated expression but depends only on �1;2.
The scalings of the various decay rates can be intuitively

understood. Away from the plasmon resonance (�1 � �2 �
0), �rad varies slightly from �0 due to a small change in the
radiative density of states near the nanowire, while the
1=d3 dependence in �non-rad reflects the dissipation of a

FIG. 2 (color online). (a) kk for plasmon modes on a silver
nanowire as a function of wire radius R, in units of k1 �

!0
�����
�1
p

=c. The fundamental plasmon mode (in black) is charac-
terized by a kk / 1=R dependence. Inset: the ratio Rekk=Imkk for
the fundamental mode. (b) Solid line: Probability of emission
into nonplasmon channels, 1� �pl=��

0 � �pl�, for a nanowire as
a function of R. Dashed line: probability of emission into non-
plasmon channels vs v for a nanotip. Dotted line: 1�
~�pl�R�=��

0 � �pl� at final radius R for a nanotip. Solid points:
numerically optimized values of 1� ~�pl�R�=��

0 � �pl� for a
nanotip, obtained via boundary element method simulations.
Inset: same plot, zoomed in near R, v � 0.
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divergent current induced in the nanowire by the near-field
of the dipole. The 1=R3 scaling for �pl can be understood
from Fermi’s golden rule, �pl � 2�g2�r; !0�D�!0�, where
g�r; !0� / 1=

��������
Aeff

p
/ 1=R is the position-dependent cou-

pling strength between emitter and plasmon modes and
D�!0� / �d!=dkk��1 / �!0R��1 is the plasmon density of
states on the wire.

The position dependence of the decay rates results in an
optimal emitter distance do for which the probability of
decay into plasmons �pl=��pl � �0� is maximized, where
�0 � �rad � �non-rad denotes the total ‘‘nonplasmon’’ de-
cay rate. For typical parameters, do is on the order of
several R as R! 0, such that the emitter sits within the
localized plasmon field but is not too close to the wire that
dissipation become dominant. In Fig. 2(b) we plot the
probability of emission into nonplasmon channels, 1�
�pl=��

0 � �pl�, as a function of R when the optimal do is
chosen. This optimized ‘‘error’’ rate decreases monotoni-
cally as R! 0 and approaches a small number /
Im�=�Re��2 indicating that the efficiency of emission
into plasmons is ultimately limited by dissipative losses.
As R! 0, one can achieve effective Purcell factors of
�pl=�0 � 5:2	 102 for a silver nanowire.

The nanowire is a simple system that illustrates the
relevant properties of dipole emission and plasmon propa-
gation. One immediately sees, however, that the increase in
coupling achieved by letting R! 0 is accompanied by a
decrease in the plasmon propagation length, which limits
coherent processes of interest. Such limits can be circum-
vented with simple design improvements, which we illus-
trate specifically for the case of a metallic nanotip,
assumed to have a paraboloidal profile given by ��z� �������
vz
p
�z > 0�. One expects a similar enhancement of plas-

mon emission due to the nanotip, yet the tip can quickly
expand to larger radii where losses can be significantly
reduced. As in the nanowire case, one can calculate the
emission rates based on the quasistatic field solution of a
dipole near a tip, which is exactly solvable by working in
parabolic coordinates. For an emitter located on-axis at po-
sition z � �jdj< 0 and oriented along ẑ, we find that [21]

 �rad=�0 �

��������1� �1� 4d=v��1

�
�2

�1
� 1

���������
2
; (7)

 �non-rad=�0 �
3

8�3=2
1 �k0d�

3
Im
�
�2 � �1

�2 � �1

�
; (8)

 �pl=�0 � 
0pl

jK1�C�1

��������������������
1� 4d=v

p
�j2

�k0v�3�1� 4d=v�
: (9)

Here, 
0pl is a constant that again only depends on �1;2, and
C�1 is the solution to Eq. (1). From these decay rates one
finds an optimized Purcell factor �pl=�0 � 2:5	 103 as
v! 0, as shown in Fig. 2(b), for the same material pa-
rameters as the nanowire calculation. In the case of a
nanotip, however, we are primarily interested in the proba-
bility that the plasmon propagates up to some final radius

R. We estimate this quantity by making an eikonal ap-
proximation based on the nanowire solution [22]. In par-
ticular, we assume that the plasmons are completely
emitted into the end of the tip (z � 0) at a rate �pl, while
the rate at which the plasmon emission successfully prop-
agates to some larger radius R�z� is given by

 

~� pl�R� � �pl exp
�
�2

Z z�R�

0
Imkk���z�
dz

�
: (10)

Here kk��� is the nanowire solution at radius �. In Fig. 2(b)
we plot PE�R� � 1� ~�pl�R�=��0 � �pl� as a function of R,
optimized over the emitter position and v. This quantity
corresponds to an effective error probability in which the
plasmon mode is either not excited or fails to successfully
propagate to some final radius R. For k0R * 0:05 the tip
leads to significant improvement in efficiency compared to
nanowires of the same R. To check the validity of these
approximations we have performed numerical (electrody-
namic) simulations of dipole emission near a nanotip using
boundary element method [23], with the resulting numeri-
cally optimized PE�R� plotted in Fig. 2(b). It can be seen
that the theory agrees well with the numerics. Some typical
simulation results are shown in Fig. 3(a). Here we plot
for different emitter positions the quantity jRe�E	
H��j=�total, which is proportional to the energy flux of
the system normalized by the total power output of the
emitter. It can clearly be seen that choosing the optimal
position results in efficient excitation of the plasmons at
final radius R, while other positions can result in primarily
nonradiative or radiative decay.

Because of losses, the plasmon modes are not suitable as
carriers of information over long distances. However, one
can evanescently couple the plasmons to dielectric wave-
guide modes, which can form an architecture for a device
to generate single photons on demand. Noting that the
concepts behind single-photon generation with a single
emitter in a cavity have been presented in detail elsewhere
[24–27], here we illustrate a potential novel realization of
a single-photon device, shown in Fig. 1(a). In this archi-
tecture, a single, optically addressable emitter such as a
quantum dot sits atop a nanowire, which copropagates over
some length Lex with a nearby dielectric waveguide. In
order to maximize the transfer efficiency into the wave-
guide, the longitudinal wave vectors kk of the plasmon and
waveguide should be approximately matched, and Lex

should be optimized. In practice, for a given wire radius
R, the matching condition results in some optimization of
parameters such as the waveguide size. A similar setup
using a nanotip instead of a nanowire is illustrated in
Fig. 1(b). Here the nanotip maintains a paraboloidal profile
up to some final radius R, at which point it becomes a
straight nanowire supporting plasmon modes with well-
defined kk that can be easily be mode matched with the
waveguide.

The out-coupling and single-photon efficiencies can be
calculated using standard mode-coupled equations based
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on Lorentz reciprocity [28]. For simplicity, we take the
dielectric waveguide to be a cylindrical optical fiber, whose
modes can be calculated analytically [11], and set the sur-
rounding and fiber core permittivities to be �1 � 2, �c �
13. In Fig. 3(b), we plot the optimized efficiency P for
single-photon generation as a function of R, for both the
nanowire and nanotip, based on the decay probabilities
obtained above and coupled-mode theory. We also include
the predicted efficiencies using the boundary element
method simulations combined with coupled-mode theory.
These calculations take fully into account all imperfec-
tions, including metal losses and imperfect waveguide
coupling. We observe that there is some optimal R where
P is maximized, which corresponds to a balance between
achieving large coupling between emitter and nanostruc-
ture, and ensuring that the plasmon/guide coupling exceeds
the enhanced losses at small R. We find that optimal single-
photon efficiencies exceeding 95% are achievable in such a
system.

Such an architecture for quantum communication based
on plasmonic devices has several important features. First,
unlike typical methods of cavity QED, the plasmon exci-
tation covers a broad bandwidth and requires no special
tuning to achieve resonance. The operation speeds can also
be quite high because of the subwavelength mode volumes
associated with the plasmons. Finally, we note that rapid
advances in recent years in fabrication techniques for nano-
wires [29,30], nanotips [31], and subwavelength dielectric

waveguides [32,33] puts such a system in experimental
reach.
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FIG. 3 (color online). (a) Normalized energy flux for an emit-
ter positioned (from top to bottom) at distances k0d � 0:002, 0.2,
and 0.7 (denoted by the blue circles). The nanotip (whose surface
is indicated by the dotted lines) has final radius k0R � 0:3 and
curvature parameter k0v � 0:022. The first plot is mostly dark
and indicates that the emitter decays primarily nonradiatively.
The middle plot demonstrates efficient excitation of guided
plasmons at the final radius R, while the last plot exhibits the
typical lobe pattern associated with radiative decay. (b) Opti-
mized efficiency of single-photon generation vs R. We have as-
sumed that coupling to waveguide modes other than the funda-
mental mode is negligible, i.e., the waveguide is effectively in
the single-mode regime. Solid line: theoretical efficiency using a
nanowire. Dotted line: theoretical efficiency using a nanotip.
Solid points: efficiency based on numerical simulations of emis-
sion near a nanotip, combined with coupled-mode equations.
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