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Quantum-Control Spectroscopy with Exact State Selectivity

Yoshiaki Teranishi

Advanced Photon Research Center, Japan Atomic Energy Research Institute, Kizu-cho, Kyoto 619-0215, Japan
(Received 17 April 2006; published 1 August 2006)

A method of exact state-selective spectroscopy is introduced, based on quantum control through four
specific short laser pulses. The exact conditions for the two pairs of ultrafast pulses are set by the feedback
control for selective excitation to one specific resonance state while the other state is destructively
interfered as the shadow pair, leading to a state-selective spectrum.
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Laser control of atomic and molecular processes has
recently emerged as an important topic of science and
technology [1]. This is basically because the inventions
of the short pulse laser and pulse-shaping techniques have
enabled the utilization of laser field coherence for effective
control. From a theoretical point of view, control is a
problem of finding an external field necessary to achieve
the desired results based on knowledge of the system. From
an experimental point of view, on the other hand, the
optimal external field for control can be found even with-
out previous knowledge of the system, if the fitness for
optimization can be obtained directly from experimental
results. The idea of feedback control proposed by Rabitz
and co-workers [2] has been experimentally realized by
many groups [3—5] utilizing computer programmed pulse
shapers [6,7] with learning algorithms. The optimal field
experimentally obtained through feedback control should
contain information about the system that may allow us to
obtain spectroscopic data that would be hard to obtain by
conventional methods of spectroscopy. In this Letter, we
introduce a new spectroscopic method that utilizes laser
coherence with feedback control to realize exact state
selectivity. This is valid for both time-resolved spectros-
copy and the spectroscopy of short-lived resonance states.
Since state selection and energy selection are different
concepts, we find that state selection in a short time is
possible even when the energy uncertainty is much greater
than the energy spacing between the states. In our method,
optimal conditions for a pulse train to achieve zero total
excitation probability are searched for by feedback control
scheme. It is proved that the obtained parameters provide
the conditions for a pulse train to achieve ultrafast state-
selective pumping. This leads to separate signals from
individual (resonance) excited states. This does not break
the uncertainty principle, because it does not require mea-
surements of the selectivity to find the conditions for
selective pumping. Conventional spectroscopy requires
the analysis of a mixture of signals from the states within
the energy broadening due to the finite lifetimes of reso-
nance states. Our new method of spectroscopy, on the other
hand, relieves us from the difficulty in the analysis and is
expected to open new possibilities in spectroscopy, provid-
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ing detailed knowledge of various kinds of resonance states
or ultrafast dynamical processes. Such knowledge may be
regarded as experimentally impossible to obtain thus far.

The key to our spectroscopic method is to find a pulse
train to achieve state-selective pumping, which leads to
state-selective spectroscopy. State-selective pumping is
achieved by a pulse train constructed by the combination
of shadow pairs. We define a shadow pair as a pair of laser
pulses designed to suppress the excitation to a selected
closely lying resonance state and to allow transitions to the
other states. The conditions for a shadow pair leads to the
position and width of the resonance state to be suppressed.
It is a very difficult task, however, to find the shadow pairs
by feedback control because we cannot obtain the selection
ratio from the spectroscopic signal, especially in the case
of overlapping resonance. Instead of using shadow pairs,
we search for a dark pulse train that is designed to achieve
vanishing total excitation probability, since the total exci-
tation probability can easily be measured. As is intuitively
understood, a dark pulse train can be constructed by com-
bination of shadow pairs. We prove below that a dark pulse
train with specific constraints can be constructed only by
combining shadow pairs. Consequently, the search for a
dark pulse train by feedback control yields a condition for
shadow pairs that allows state-selective spectroscopy. In a
quite different context, a set of laser pairs has been con-
sidered to provide coherent control over computer feed-
back to accomplish the phase-space cooling of atoms [8].

As a simple example, let us take the nondegenerate
three-state system A, B, C, whose eigenenergies are Ey,
Eg, and E, respectively. When an excited state X (X =
B, C) decays in a finite lifetime, the eigenenergy has the
imaginary part Exy = ey + il'x/2. Here we assume that the
decay process does not involve the other two states. From
the fact that the time propagation of the probability ampli-
tude of the state X is given by e’fx’, it is easily seen that the
population decays exponentially due to the imaginary part
of Ey.

Our spectroscopy requires us to find a dark pulse train
composed of four pulses with the common central fre-
quency  and temporal profile F(¢) of the electric field
given by
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where A;, 7;, and o; are the peak amplitude, irradiation
time, and the initial phase of the ith pulse, respectively.
Assuming that the bandwidth of each pulse is broad
enough to excite both excited states B and C and that the
system linearly responds to the irradiation, the probability
amplitude of the excited state X (X = B, C) at time ¢ (after
the irradiation of the pulse train) is given by

4
cx(t) = Z Cyx.i(1). ()
i=1

Here Cy (1) represents the transition amplitude of the
excited state X created by the irradiation of the ith pulse,
given by

CX,i(t) — aXAie—iEx(t—’r,-)e—i(a)T,-+zr,-)€—iEA’r,-’ (3)

where the initial time is 0, and ay is a constant depending
on the transition dipole moment and the temporal profile
F(f). Here and in the following, units have been chosen
such that # = 1, unless otherwise stated. The three expo-
nential factors in Eq. (3) respectively represent the time
propagation on state A before irradiation, the additional
phase due to the irradiation of the ith pulse, and the time
propagation on the state X after irradiation. The pulse train
given by Eq. (1) is a dark pulse train if and only if

cp(t) = cc(t) = 0. €]

We demand the constraints on the pulse train in such a way
that the time delay, the initial phase difference, and the
ratio of the peak intensity between the first and second
(third) pulses are the same as those between the third
(second) and fourth pulses:

7'2_T1=’T4_T3=ATI, (5)
0'2_0']:0-4_0-3:61, (6)
Ay /A = Ay/A5 =1y, @)
T3_T1:T4_T2:A72, (8)
03— 0] = 04— 0y = 0y, )

and
AS/AI = A4/A2 =TI (10)

The four parameters 8, 65, 7|, and r, are determined with
fixed A7, and A7, by the feedback control method to
achieve the vanishing total excitation probability. Since
the total excitation probability does not have any saddle
point as a function of the four parameters except for the
real minima, the optimization of the parameters can be
achieved without any difficulty.

From the constraint equations (5)—(10), we derive that
Cx,3(t) + Cx,4(t) = (Cx,l(t) + Cx,Z(t)) Cx,3(t)/cx,1(t)- (11)
This enables us to factorize Eq. (2) as

ex(r) = (Cx1 (1) + Cx2(D)(Cx,1 (1) + Cx3(1))/ Cx1 (1)
(12)

The condition equation (4) demands either

Cpi(t) + Cpr(t) =0 and Cc, (1) + Ccs(1) =0,
(13)

Cp1(t) + Cp3(r) =0 and Cc (1) + Cca(r) =0,
(14)

Cpi(t) + Cpr(t) =0 and Cc, (1) + Ccr(1) =0,
(15)

or

CB,l(t) + CB,3(I) =(0 and Ca](l) + CC,3([) = (.
(16)

The condition equations (15) and (16) are satisfied when a
pair of pulses is simultaneously the shadow pair for both
the excited states. This situation takes place only when the
time delay A7; and the energy gap between the excited
states AE satisfy the relation AEA7;, =2n7m (n=
1,2,...). If we set the time delay to be shorter than that,
that is,

AEATi <27T, (17)

it is made sure that the shadow pulse for one state achieves
excitation to the other state with nonzero probability. This
leads to state-selective pumping. We thus conclude that if
the constrained pulse train given by Eq. (1) is a dark pulse
train and if the condition equation (17) is satisfied, either
Eq. (13) or Eq. (14) is satisfied as well. This means that the
pair of the first and second pulses constitutes a shadow pair
for one state, while the pair of the first and third pulses is a
shadow pair for the other state. The obtained shadow pairs
can be used for ultrafast state-selective pumping, leading to
both time-resolved and energy-resolved state-selective
spectroscopy. Furthermore, the four parameters obtained
by the feedback provide the positions and widths of both
states B and C:

ex —Efs =0 +[2n+ 1)+ §;]/A7;, (18)
and
FX = 21n(ri)/ATi, (19)

where (X, i) = (B, 1), (b,2), (¢, 1), or (¢, 2).

This method can be extended directly to multilevel
problems. In the case of an (N + 1) system with N reso-
nance states and one initial state, irradiating pulse trains of
2N pulses enable us to find 2N optimal parameters for the
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achievement of vanishing total excitation probability. From
the optimal parameters, we obtain the positions and widths
of the resonance states and can construct a pulse train of
2N=1 pulses to excite to only one of the resonance states by
the combination of the shadow pairs.

We take an example of a three-state system whose
eigenenergies are given by

E,=0[cm™!] (20)
Ep =10000 — 25i [cm™ 1], 21)

and
Ec = 10021 — 27i [em™ '] 22)

Here the widths of the excited states and the energy gap
are of the same order, which might be regarded as a model
of various kinds of physical systems with overlapping
resonances, e.g., the Auger states, predissociative states
of a molecule, and short-lived resonance states with iso-
tope shifts.

We solve the Schrodinger equation to obtain the total
excitation probability after irradiating the pulse train with
A7 =300 fs and A7, = 330 fs. The duration time and
the carrier frequency of each pulse are set to 86 fs and
9990 cm ™!, respectively. The parameters are optimized in
order to minimize the total excitation probability. Since
there is no local minimum, it may be possible to employ
simple methods such as the downhill simplex method or
Powell’s method to find the parameters to achieve the
vanishing excitation probability. Here we take a much
simpler way by using the variable transformation given by

a=(5,+8)/2, (23)

b= (86— 8,)/2, 24)

c=(ry +1r)/2 (25)
and

d=(ry —r)/2 (26)

By taking the initial conditions b =0, ¢ = 1, and d =
0, we start optimizing each variable independently in the
order of a—c—b—d— a— ---. Since it may be
difficult to adjust the parameters precisely in real experi-
ments, we vary the parameters up to only three digits.

Table I shows the selection ratios achieved by the
shadow pairs obtained after each optimization loop. The
darkness of the pulse train defined as the total excitation
probability divided by the transition probability induced by
irradiating only the first pulse of the train is also shown in
Table I. In our spectroscopy, it is necessary to distinguish a
sufficiently small signal from the noise and background
signals in order to obtain a better dark pulse. As shown in
Table I, the fourth loop achieves a darkness of about 0.002,
providing shadow pairs with excellent selection ratios

TABLE I. The selection ratios achieved by shadow pairs ob-
tained after each optimization loop and the darkness of the pulse
train. The darkness is the ratio of transition probabilities attained
by the pulse train to the probability by the first pulse of the train.

No. of loops legl?/lecl? lecl?/legl? Darkness
1 0.102 0.078 0.0673
2 0.0565 0.0325 0.0323
3 0.002 38 0.003 15 0.004 15
4 0.000471 0.000 301 0.002 14
Exact 0 0 0

(~107%). This means that such an accurate state-selective
pumping is attainable if the S/N ratio is greater than 500,
which is not difficult to realize in today’s experimental
facilities [9]. It should be noted that the time delays are set
to around 300 fs, and the corresponding energy uncertainty
is about 50 cm™!, which is more than twice that of the
energy gap between the excited states. Even faster and
more accurate selective pumping is possible with a greater
S/N ratio and a more precise adjustment of the parameters.

To show the effectiveness of Eqgs. (18) and (19), we plot
the decay signal from each resonance state using the
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FIG. 1. The dotted line in (a) shows the sum of the spectra

from the excited states. The solid lines in (b) and (c) show the
exact Lorentzian spectrum from each excited state. Dashed lines
show the present results of the Lorentzian spectrum with the
parameters obtained by the (b) first and (c) fourth optimization
loops.
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obtained positions and widths in Fig. 1. Figure 1(a) shows
the sum of the Lorentzian curves of the excited states. This
is what conventional spectroscopy normally yields (or the
interference effects may be included in some cases).
Figures 1(b) and 1(c) show the separated Lorentzian signal
with the parameters obtained, respectively, after the first
and fourth loops by the present spectroscopy, together with
the curves with the exact positions and widths. Even a
crude optimization of the first loop roughly reproduces
the separated signals. Further optimization can refine the
results. As shown in Fig. 1(c), the parameters obtained
after the fourth loop provide decay signals almost indis-
tinguishable from the exact ones, thus demonstrating the
power of our method.

The present idea of state-selective spectroscopy may be
widely applicable to various types of decay processes.
Examples are the Auger process, the predissociation of
molecules, or the natural emission of photons. In these
examples, a dark train is searched for by measuring
Auger electrons, dissociation products, or fluorescence
after the irradiation of the pulse train. The dark pulse train
provides the positions, widths, and shadow pairs for the
excited resonance state. The ultrafast and accurate state
selectivity attained by precise pulse shaping drastically
improves the conventional methods of ultrafast spectros-
copy and the spectroscopy of short-lived resonance states,
elucidating what the conventional methods cannot.

Since its invention, the laser has been regarded as a
powerful tool for spectroscopy by virtue of its ability to
provide precise measurements through its monochromatic
nature and intensity. Coherence is also a great feature of the
laser and is expected to usher in a new world of spectros-
copy, especially together with the technique of pulse shap-
ing. One may employ multidimensional spectroscopy [10]

to utilize pulse-shaping techniques, but this requires the
analysis of parameters, which is tedious when there are
large numbers of parameters. With feedback spectroscopy,
on the other hand, many parameters are analyzed automati-
cally through the optimization procedure. As is shown in
this Letter, the appropriate setting of the optimization and
constraints of the optimal pulse provides detailed informa-
tion that is hard to obtain by conventional spectroscopy.

The author is grateful to Professor Tajima at JAERI for
his helpful discussion.
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