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Measurement of Stochastic Entropy Production
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Using fluorescence spectroscopy we directly measure entropy production of a single two-level system
realized experimentally as an optically driven defect center in diamond. We exploit a recent suggestion to
define entropy on the level of a single stochastic trajectory [Seifert, Phys. Rev. Lett. 95, 040602 (2005)].
Entropy production can then be split into one of the system itself and one of the surrounding medium. We
demonstrate that the total entropy production obeys various exact relations for finite time trajectories.
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Entropy as the central concept in statistical physics per-
vades many branches of science. Well-defined and uncon-
tested only in equilibrium, its extension to time-dependent
nonequilibrium phenomena has been debated since the
days of Boltzmann mostly in relation to an explanation
of irreversibility and a foundation of the second law of
thermodynamics [1]. Major progress arose with the for-
mulation of the fluctuation theorem, which quantifies in the
long time limit the probability of entropy annihilating
trajectories in small systems constantly driven in a steady
state [2—6]. Entropy production in these systems is either
defined as phase space contraction rate or associated with a
dissipation functional, which ultimately should describe
the dissipated heat.

By introducing the notion of a stochastic entropy along a
single trajectory, it has become possible both to extend the
validity of the fluctuation theorem to finite times and to
prove an integral fluctuation theorem for the total entropy
production in arbitrarily driven systems governed by sto-
chastic dynamics [7]. In this Letter, using our previously
introduced driven two-level system [8], we measure the
stochastic entropy production along single trajectories and
demonstrate that it obeys various exact relations for finite
times.

Fluctuation theorems for entropy production should be
distinguished from related theorems like the Jarzynski
relation [9], Crooks’ theorem [10], and the Hatano-Sasa
relation [11]. The first two allow one to extract free energy
differences from nonequilibrium work measurements.
Experimental tests have been performed by using a tor-
sional pendulum [12], by mechanically stretching RNA
hairpins [13,14], as well as by driving a colloidal particle
in a time-dependent harmonic [15,16] and nonharmonic
potential [17]. The Hatano-Sasa relation yields an exact
expression for transitions between different steady states
from which follows a general Clausius inequality that has
been tested using a driven colloidal particle [18]. All these
relations address a small system embedded in a surround-
ing heat bath of constant temperature. In contrast, our setup
works athermally and therefore neither involves nor re-
quires any notion of dissipated heat. While our previous
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work has demonstrated an exact Jarzynski-like relation for
the athermal analog of ““dissipated work” [8], this Letter
addresses the concept of stochastic entropy production
directly. The crucial difference is that the derivation of
the latter requires using the actual nonequilibrium proba-
bility distribution in a general master formula [7], whereas
the former involves the corresponding equilibrium distri-
bution [19]. Still, both quantities fulfill various exact rela-
tions like an integral fluctuation theorem.

Our system is a photochromic defect center in natural
ITa-type diamond. Its optical properties indicate that we are
dealing with a nickel-related center [20]. It can be excited
by red light responding with a Stokes-shifted fluorescence.
In additional to this “bright” state the defect exhibits a
nonfluorescent ‘“‘dark’ state. The transition rates a (from
dark to bright) and b (from bright to dark) depend linearly
on the intensity of green and red light, respectively, turning
the defect center into an effective two-level system

0 (dark) ? 1 (bright) (1)

with controllable transition rates a and b.

Single centers were addressed with a home-built con-
focal microscope [21] using a dye laser (CR699, DCM)
running at 680 nm (red light intensity « b) superimposed to
the 514 nm line of an Ar-Ion laser (green light intensity
xa) as excitation sources. While the red light was kept
constant throughout the experiment, the green light was
modulated using a function generator controlled acousto-
optical modulator. In addition to the fluorescence of the
single defect, a second avalanche photodiode recorded
simultaneously the alternating intensity of the green light.

The system can be found in state n with probability p,,
where n takes either the value O or 1. To drive the system
out of equilibrium, we modulate the rate a (from dark to
bright) according to the sinusoidal protocol

a(t) = ap[1 + ysin(2mt/t,,)], (2)

whereas the rate b is held constant. The parameters are the
equilibrium rates a, and b, the period t,,, and the modula-
tion depth 0 < y < 1. At a time resolution of 1 ms the data
of the two detectors were acquired simultaneously after
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starting the modulation protocol for the green laser.
Following 20 periods with 7,, = 50 ms and a certain modu-
lation depth vy, the system was given 1000 ms of unmodu-
lated green light to relax back into equilibrium. A sine
function has been fitted to the mean intensity of the green
laser to obtain the modulation depth . Of the four runs in
this Letter, three have 1000 trajectories and one has 2000
trajectories. The modulation depths were varied from y =
0.07 to 0.46.

A dimensionless, nonequilibrium entropy for driven
systems on the level of a single stochastic trajectory has
been defined in Ref. [7] as

S(l) == ln[pn(t)(t)]’ (3)

where the measured probability p, is evaluated at the
actual state n(r) at time ¢. Figure 1(a) shows the protocol
a(t) together with the probability p,(z) to dwell in the
bright state. Figure 1(b) displays a sample binary trajectory
n(f) jumping between the two states. In Fig. 1(c) we see
that the evolution of s(¢) is governed by two effects. First,
the time-dependent driving of the rates leads to an evolving
probability resulting in a continuous contribution. Second,
a jump between the two states gives rise to a contribution
—In[p,/p_], where p_ and p are the probabilities of the
states immediately before and after the jump, respectively.
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FIG. 1 (color online).

Beside the entropy of the system itself, energy exchange
and dissipation lead, in general, to a change in medium
entropy. For an athermal system, this change in medium
entropy As,, cannot be inferred from the exchanged heat.
Rather it has to be defined. In Ref. [7], the choice

As,, = In24

)
Wji

for a jump from state i to state j with instantaneous rate w;;
(w;; being the backward rate) has been motivated in anal-
ogy to the thermal case. In our case it becomes As,, =
—In[a(r)/b] for a jump 1+ 0 and As,, = — In[b/a()]
for a jump O~ 1. As demonstrated in Fig. 1(d), the
medium entropy changes only when the system jumps,
thereby balancing to some degree the change of s(z).

One of the fundamental consequences of a stochastic
entropy (3) is the fact that besides entropy producing
trajectories, entropy annihilating trajectories also exist;
see Figs. 1(e) and 1(f), respectively. However, in accor-
dance with physical intuition, the latter become less likely
for longer trajectories or increased system size. Entropy
annihilating trajectories not only exist, they are essential to
satisfy the integral fluctuation theorem [7]

<exp[_Astot]> = 1. )

6001 (g) 400! (h) a00] (i)
400
200 200 200
o 0!
-1.0 0.0 10 -4 0 4 8 4 0 4 8
As Asm ASiot

Entropy production in a single two-level system with parameters aq = (15.6 ms)~!, b = (21.8 ms)~!, ¢, =

50 ms, and y = 0.46. (a) Transition rate a(r) [solid line (green online)] and probability of the bright state p;(¢) [circles (red online) are
measured; dashed line (red online) is the theoretical prediction] over 4 periods. (b) Single trajectory n(t). (c) Evolution of the system
entropy. The gray lines correspond to jumps (vertical dotted lines) of the system whereas the dark lines show the continuous evolution
due to the driving. (d) Entropy change of the medium, where only jumps contribute. (e), (f) Examples of (e) entropy producing and
(f) entropy annihilating trajectories. The change of system entropy As = s(r) — s(0) (solid, black lines) fluctuates around zero without
effective entropy production, whereas in (e) As,, [dashed (red online)] produces a net entropy over time. In (f) As,, consumes an
entropy of about 1 after 20 periods. (g), (h), (i) Histograms taken from 2000 trajectories of the system (g), medium (h), and total
entropy change (i). The system entropy shows four peaks corresponding to four possibilities for the trajectory to start and end (0 — 1,
10,0~ 0, and 1 — 1). The distribution (h) of the medium entropy change has mean (As,,) = 1.7 and width o,, = 3.7; on this
scale it differs only slightly from the distribution of the total entropy change (i).
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This theorem states that the average (- - ) over infinitely
many realizations of a process involving the total entropy
change As, = As + As,, becomes unity for any trajec-
tory length and any driving. Trajectories with As,, <0
may occur seldom but are exponentially weighted and thus
contribute substantially to the left hand side of Eq. (5). As
an immediate consequence of Eq. (5) one has with
(As) = 0 a consistent formulation of the second law of
thermodynamic for small systems, giving a posteriori sup-
port to the entropy definition (3).

Figure 2(a) demonstrates how the average entropy pro-
duction increases with increasing driving amplitude y. To
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FIG. 2 (color online). Experimental test of the integral fluc-
tuation theorem (5). (a) Probability distribution of the total
entropy production of a driven two-level system. The modulation
depth vy increases from 0.07, 0.14, 0.20 to 0.46; other parameters
as in Fig. 1. The trajectory length is 20 periods with 1000
trajectories per distribution (2000 trajectories for y = 0.46).
(b) The mean {exp[ —As,]) over trajectory length for the four
different modulation depths.

fulfill the constraint imposed by Eq. (5) the distributions
spread, making trajectories with large negative production
more likely. In Fig. 2(b) we present the experimental
evidence for the validity of the theorem (5) analyzing
1000 trajectories. Only for the largest modulation depth
in combination with long trajectories (¢ > 15 periods) a
deviation from the theorem is observable. This is due to the
need for larger statistics as the mean value of the entropy
increases [22].

A stronger but also more special version of a fluctuation
theorem is the detailed fluctuation theorem [3,4]

P(+Asi1) _

P(—As.) exp[ +Aso . (6)

Its experimental test is shown in Fig. 3. Adapted to our
situation, it states that entropy annihilating trajectories
with probability P(—As,,) become exponentially less
probable compared to trajectories producing the same
amount of entropy with the increasing absolute value of
the entropy. This theorem was derived originally for the
long time limit in nonequilibrium steady states. However,
following Crooks’ reasoning [10] it even holds for periodic
driving as in our experiment, provided (i) the protocol is
time-symmetric, and (ii) the distribution p,(¢) has relaxed
into the corresponding periodic limit distribution. The first
requirement is easily met by choosing start and end of the
trajectories at n + 1/4 periods. As for the second require-
ment, in Fig. 1(a) we see that the probability p, (7) indeed
relaxes and trails with a constant phase shift behind the
driving rate a(r). Therefore we wait several periods before
we start to record the data.
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FIG. 3. Experimental test of the detailed fluctuation theorem
(DFT) (6) after 20 periods with the same parameters as in Fig. 1.
Following Eq. (6), the slope should be 1. The inset shows the
slope of the DFT as a function of the trajectory length. Because
of the statistics of the entropy distribution, the DFT is satisfied
best for longer trajectories.
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In conclusion, we have provided the first direct mea-
surement of entropy production along single stochastic
trajectories in periodically driven systems. In particular,
we have shown that it is crucial to include the entropy of
the system itself. While for long trajectories it remains
bounded, its contribution is required for both the integral
and the detailed fluctuation theorem to hold for finite times.
How this stochastic entropy will contribute to a more
comprehensive understanding of nonequilibrium dynamics
remains to be elucidated through the future study of more
complex systems.
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