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We propose a scheme to implement quantum gates on any pair of trapped ions immersed in a large
linear crystal, using interaction mediated by the transverse phonon modes. Compared with the conven-
tional approaches based on the longitudinal phonon modes, this scheme is much less sensitive to ion
heating and thermal motion outside of the Lamb-Dicke limit thanks to the stronger confinement in the
transverse direction. The cost for such a gain is only a moderate increase of the laser power to achieve the
same gate speed. We also show how to realize arbitrary-speed quantum gates with transverse phonon
modes based on simple shaping of the laser pulses.
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Trapped ions have been demonstrated as one of the most
promising systems for implementation of quantum com-
putation. Different theoretical schemes have been pro-
posed for quantum gate operations [1–7], and many
building blocks of quantum computing have been experi-
mentally demonstrated [8–15]. In an ion trap quantum
computer, entangling gates between different ions are me-
diated through phonons in the collective ion motion. In all
previous gate schemes [2–7], the longitudinal phonon (LP)
modes are exploited by kicking the ions along the axial
direction of a linear trap.

In this work, we propose to use the transverse phonon
(TP) modes for gate operations. Compared with the con-
ventional schemes (hereafter referred to as LP gates), gates
involving TP modes (TP gates) have the following distinc-
tive features: First, due to the strong confinement in the
transverse direction, the TP gate is much less sensitive to
ion heating and thermal motion. Even if the axial ion
oscillation amplitude is significantly greater than the opti-
cal wavelength [outside of the Lamb-Dicke (LM) regime],
high-fidelity gates through the TP modes are still possible.
If � denotes the ratio of the center-of-mass (c.m.) trap
frequencies for the transverse and the longitudinal direc-
tions (�� 1 in typical experiments), we show that gate
infidelity due to thermal ion motion is reduced by a factor
ranging from �4 to �6, depending on details of the initial
ion temperature and the heating mechanism. This improve-
ment may be particularly significant for a system of many
ions or for ions confined in a microtrap [16], where ion
heating and thermal motion may dominate gate errors.
Second, the cost of using the TP modes is moderate,
even though it is more difficult to excite the TP modes
due to their strong confinement. For TP gates to have the
same speed as LP gates, the intensity of the driving laser
needs only to be increased by a factor of

���������
�=2

p
, a small

factor when compared with the improvement in gate fidel-
ity. Finally, we show that TP quantum gates can be oper-
ated with arbitrary speeds. Although the frequency
splitting of the TP modes is significantly smaller than
that of the LP modes, this does not impose any limit to
the gate speed. High-fidelity fast TP gates are still possible

through control of a simple sequence of laser pulses, which
typically involves excitation of many TP modes.

Transverse phonon modes.—To design TP quantum
gates, we first describe the structure of the TP modes. We
consider a system of N ions confined in a linear trap with
the external harmonic trapping potential characterizing by
the c.m. trap frequency!� (� � x, y, z) along the direction
� [8]. Typically, !x �!y � !z, and one has a linear
geometry with an ion chain along the z axis when
!x;y=!z is larger than the critical ratio about 0:73N0:86

[17]. The phonon modes are obtained through diagonaliza-
tion of the Hamiltonian for the ion external motion [18]. In
terms of the normal phonon modes, the motional
Hamiltonian H0 can be written as the standard form H0 �P
�
PN
k�1 @!�;k�a

y
�;ka�;k � 1=2�, expressed by the annihila-

tion and creation operators a�;k, a
y
�;k of the kth normal

mode in the � direction. The eigenfrequencies !�;k ���������
��;k

p
!� and eigenvectors b�;kj of the normal phonon

modes are obtained from diagonalization of the matrix
A� � �A�nj	 with

P
nA

�
njb

�;k
n � ��;kb

�;k
j . The matrix ele-

ments of A� are determined by the harmonic expansion
of both the external trapping potential and the Coulomb
interaction between the ions and is given by

 A�nj �
�
�2
� �

PN
p�1;p�j a�=juj 
 upj

3 �n � j�

a�=juj 
 unj3 �n � j�;

(1)

with �� � !�=!z, ax � ay � 
1, and az � 2 [18,19].
The jth ion’s dimensionless equilibrium position uj can
be derived by numerically solving a set of equations uj 
Pj
1
n�1 1=�uj 
 un�

2 �
PN
n�j�1 1=�uj 
 un�

2 � 0 for any
large ion array [18].

In order to visualize the TP and LP modes, we plot the
complete mode spectrum for a 10-ion array in Fig. 1. We
choose the trap frequency ratio �x � 10, which is typical
for experiments and larger than the critical value of 5.3 to
stabilize a linear configuration for N � 10 ions. As op-
posed to the LP modes, the highest frequency TP mode is
the c.m. mode at !x. The frequency splitting between the
c.m. mode and the second-to-highest mode (the bending
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mode) is about 0:05!z, which is significantly smaller than
the splitting �

���
3
p

 1�!z of the corresponding LP modes

(the spectral structure of the TP modes is inverted com-
pared to the LP modes, as seen in Fig. 1). For entangling
local ions (such as neighboring ions), it is best to use the
low-frequency TP ‘‘zigzag’’ mode [20] as it is more re-
solved from the other TP modes and most insensitive to the
ion heating. But the c.m. mode has the advantage that it is
equally coupled to all the ions, and thus more appropriate
for gates between nonlocal ions (such as ions at different
edges of the chain). When comparing features of gates
using TP or LP modes, we parametrize the comparison
with the c.m. modes for both cases.

General formalism of trapped ion quantum gates.—
First, we give a general formalism for multi-ion entangling
quantum gates, which is valid with either TP or LP modes.
The qubit for each ion is represented by two hyperfine
states, denoted as j0i and j1i in general. The gate is
achieved by applying a state-dependent ac-Stark shift on
the ions [11,15], using two laser beams of equal intensity,
wave vector difference �k and frequency difference �. As
it is common in experiments, we assume that the average
ac-Stark shifts are the same for the j0i and j1i states for the
ions in their equilibrium positions. In this case, the
Hamiltonian for the laser-ion interaction has the form
H �

PN
j�1 @�j cos��k � qj ��t��

z
j, where �k � qj �P

��k�q
�
j �t� with the jth ion’s displacement q�j �t� �P

kb
�;k
j

���������������������
@=2M!�;k

q
�a�;k � a

y
�;k�, and �j denotes the two-

photon Rabi frequency of the jth ion, which is proportional
to the intensity of the driving laser. For convenience, �j is
assumed to be real, but it can be time dependent.

Now we assume that the relative wave vector �k is
chosen along a certain direction � (� � x or z), and mo-
tion in all modes in this direction is in the LM re-
gime ��;k

�����������������
�n�;k � 1

p
� 1 for all k, where ��;k �

j�kj
���������������������
@=2M!�;k

q
is the LM parameter and �n�;k the mean

phonon occupation number of mode (�, k). Note that for
TP quantum gates (� � x), the lower frequency LP modes
� � z (as well as the other transverse mode � � y) are
decoupled and hence need not be confined within the LM
regime. To lowest order in ��;k and under the rotation-

wave approximation, the interaction-picture Hamiltonian
of the system is

 HI � 

XN
j;k�1

@��j �t�g
k
�;j�a

y
�;ke

i!�;kt � a�;ke

i!�;kt��zj; (2)

where the coupling constant gk�;j � ��;kb
�;k
j , and �j�t� �

�j sin��t� is proportional to the state-dependent force on
the jth ion. The evolution operator corresponding to the
Hamiltonian HI is given by [7,21]

 U��� � exp
�
i
X
j

	�
j ����

z
j � i

X
j<n

	�
jn����

z
j�

z
n

�
; (3)

where the displacement operator	�
j ����

P
k�


k
�;j���a

y
�;k�


k
�;j���a�;k	 with 
k�;j��� �
R
�
0 �j�t�g

k
�;je

i!�;ktdt, and the

conditional phase 	�
jn����2

R
�
0dt2

Rt2
0 dt1

P
k�j�t2��

gk�;jg
k
�;n�n�t1�sin!�;k�t2
 t1�.

To drive a conditional phase flip (CPF) gate between
arbitrary ions j and n, we take �j to be nonzero only for
these two ions, and set the laser detuning � and the gate
time � so that 	�

j ��� � 	�
n��� � 0 and 	�

jn��� � �=4. In
this case, the evolution operator U��� reduces to the CPF
operator Uij � exp�i��zj�

z
n=4�.

TP vs LP quantum gates.—To compare quantum gates
based on TP vs LP modes, let us start with the assumption
that the driving laser can address individual phonon modes
through frequency selection (resolved-sideband address-
ing). This requires the gate time � to be much larger than
�� � 2�=�, where � is the characteristic frequency split-
ting of the phonon modes (we will see later that only one
phonon mode dominates when � � 2��). The sideband
addressing assumption, although not essential, allows us
to derive simple analytic relations that permit a direct
comparison between TP and LP gates.

With sideband addressing, we dominantly excite a par-
ticular phonon mode (�, p) with frequency !�;p by
adjusting the laser detuning � close to !�;p with � �
!�;p � 2�l�=�, where l� is an integer, typically chosen
as 1 or 
1 [3,7]. The qubit state and the motion state
should be disentangled at the end of the gate, which
requires 	�

j ��� � 	�
n��� � 0 and thus � � l0��=!�;p [see

Eq. (3)], where l0� is another integer (typically, l0� � l�). In
this case, the conditional phase shift is found to be

 	�
jn��� � 


bp�;jb
p
�;n

4�

�2
�;p�2�2

1� l�=l0�
: (4)

The condition 	�
jn��� � �=4 can be satisfied with an ap-

propriate choice of the Rabi frequency �.
To consider inherent infidelity of the gate operation, we

note that all the above results are derived based on the LM
condition. In practice, the LM parameter is finite, and the
thermal motion of the ions will induce some fluctuation of
the Rabi frequency � and lead to gate errors. To estimate
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FIG. 1. The spectrum of the longitudinal (LP) and transverse
phonon (TP) modes for a 10-ion array. The dashed lines (No. 1)
denote the c.m. mode.
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this noise, we need to expand the laser-ion interaction
Hamiltonian to higher-orders in the LM parameters. The
effect of these higher-order terms is to replace � in Eq. (4)
with an effective Rabi frequency ��

n that depends on the
phonon number n� of the ion vibrational mode (�, p). To
the next order of the LM parameter ��;p, we find ���

n�2 �

�2
��1
 �

2
�;p�2n� � 1�	 [3]. The gate fidelity F�g [22] is

then found to be F�g � 1
2�

1
2

P
1
n�0 P

�
n cos��2 �

2
�;p�2n� 1�	.

When the initial phonon number distribution P�n takes the
form of a thermal state, P�n � �nn�=�1� �n��

n�1, we find to

lowest order in ��;p a gate infidelity F�in � 1
 F�g of

 F�in � �2�4
�;p� �n

2
� � �n� � 1=8�: (5)

As the TP mode has a larger vibrational frequency, the
TP quantum gates have a significantly smaller gate infidel-
ity from thermal ion motion. Even if we assume the TP and
the LP modes have the same mean phonon number �nx �
�nz, the infidelity for the TP gate is smaller by a factor of
Fxin=F

z
in � �4

x;p=�4
z;p � �!z;p=!x;p�

2. In practice, if the TP
and LP modes are subject to the same heating mechanism
and initially prepared with the same laser cooling tech-
nique, we further expect �nx � �nz due to differences in the
initial temperature and the heating rate of TP vs LP modes.
The temperature limit TL can be considered as independent
of the phonon frequency !�;p for Doppler cooling and is
roughly proportional to 1=!�;p for Raman sideband cool-
ing. So the contribution of TL to the mean phonon number
�n�, estimated as kBTL=@!�;p, is taken to be �1=!�;p�

�,
where � is between 1 and 2. The ion heating rate _�n� for the
phonon mode (�, p) is proportional to the noise power
spectrum S�!�;p� at the frequency !�;p [23], taken to be
independent of frequency (white noise) or proportional to
1=!�;p (1=f noise). For these practical noise sources [23],
the average phonon occupation number therefore scales as
�1=!�;p�

�0 , with �0 again between 1 and 2. If we assume
the term �n2

� dominates in the infidelity expression (5),
which is likely for many ions in a crystal, the infidelity ra-
tio of TP vs LP gates is then Fxin=F

z
in � �n2

x�4
x;p=� �n2

z�4
z;p� �

�!z;p=!x;p�
2����0 , where we have assumed that the gate

time � is the same for both cases. For the c.m. modes,
!z;p=!x;p is given by the trap frequency ratio �x �
!z=!x. So, compared with LP gate, the inherent infidelity
of the TP gate could be reduced by a factor of �4

x to �6
x,

which is significant even for a moderate trap frequency
ratio of �x � 5.

Now we look at the cost of the TP quantum gate. As the
TP modes have a higher vibrational frequency, it is harder
to excite them, and we need more laser intensity for the
same gate speed. From Eq. (4), to have the same gate time
�, the ratio of the required laser intensity Ix=Iz (note that I�
is proportional to the two-photon Rabi frequency ��) is

given by Ix=Iz � �z;p=�x;p �
���������������������
!x;p=!z;p

q
, which is

������
�x
p

for the c.m. mode (we neglect l�=l0� in Eq. (4) as it is

typically much less than 1). So, although we need addi-
tional laser power for the TP quantum gate, this cost is
moderate compared with the improvement we achieve in
the gate fidelity. If we take into account of different laser
excitation configurations for the TP and the LP gates, this
cost is even less. For the LP gate, the relative wave vector
�k of the Raman laser beams needs to be along the trap
axis, but one cannot directly apply lasers in that direction,
so in practice both of the laser beams have a 45� to the trap
axis [11,15]. However, for the TP quantum gate, one can
apply counterpropagating laser beams along the x axis so
that �k is perpendicular to the ion string. Because of this

difference, the laser intensity ratio Ix=Iz is actually
�����������
�x=2

p
instead of

������
�x
p

. The above laser configuration difference
also gives some practical advantages for the TP quantum
gates: first, as the laser beams are perpendicular to the ion
string, it is easy to have the same relative laser phase for
different ions, as assume in the gates above. For LP gates, it
is difficult to achieve such a condition for different ions as
they are not equally spaced. It usually requires subtle
control of the ion distance through adjustment of the trap
frequency [10,11], and such a technique is not scalable to
many ions. Second, with the transverse focused laser
beams, it is also easier to achieve separate addressing of
different ions. For the TP gate, one does not need to have a
large longitudinal !z to achieve the LM condition, so the
ion distance is not limited, and one can combine separate
addressing with a many-ion setup, which is desired for
scalable quantum computation.

Arbitrary-speed TP gates through minimal control of the
laser beams.—As we have mentioned before, the TP
modes have small frequency splittings, so resolving a
particular TP mode could be difficult for a large ion array.
If we want to achieve a high-speed gate, it is necessary to
go beyond the sideband addressing (single-mode) limit.
Fortunately, for any practical qubit number (up to a few
hundreds, for instance), it is always possible to take into
account all the phonon modes and design high-fidelity
gates with no limitation to the gate speed [5–7]. These
fast gates are in general based on control of the laser
pulses.

Here, similar to Ref. [7], we use a simple sequence of
laser pulses which take minimum experimental control. We
chop a continuous-wave laser beam into m equal-time
segments, with a constant but controllable Rabi frequency
�p for the pth (p � 1; 2; . . . ; m) segment. The state-
dependent force ��t� in the Hamiltonian (2) then takes
the form ��t� � �p sin��t� for the time interval �p

1��=m � t < p�=m. (For simplicity of the notation, we
omit the direction index � in the following and take � �
x by default.) With a large number of ions but a small
number of control parameters �p, the displacements 
kj���
[and thus 	j���] in the evolution operator (3) may not
exactly reduce to zero. But as long as they are small, we
still can get a high-fidelity gate. The task of control is to get
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a small infidelity Fin by choosing an optimal laser detuning
� and a minimum number of the control parameters �p.

First, let us consider the gate with a single continuous-
wave laser beam (the number of segments m � 1). The
only control parameter is the detuning �. We find that for
the gate on two edge ions (first and second ions) in a 10-ion
array, as long as the gate time � � 37�0, where �0 �
2�=!z, the gate infidelity Fin � 0:99%. For this and the
following calculations, we take �n1 � 3, which corresponds
to a pretty high temperature. The optimal � is very close to
the value !x � 2�=�. Note that a gate with � � 37�0 has
been faster than any ion gate implemented so far in the lab
[11,15]. For this gate, the time � is close to �� � 2�=�
(� � 1:8��), where � is the frequency splitting between
the c.m. TP mode and the bending mode. So, besides the
dominant c.m. mode, various TP modes are indeed slightly
excited during the gate and contribute to the conditional
phase 	jn���. But with the optimal �, all these modes
evolve along an almost-closed loop in the phase space
(
ki � 0, although not exactly), so we still have a high-
fidelity gate.

If we further increase the gate speed with � < 37�0, the
gate fidelity quickly decreases, so we need to chop the
continuous-wave laser beam into more segments with m>
1 to increase the fidelity. With a sufficiently large m, a
high-fidelity gate with an arbitrary gate speed can be
achieved. In Fig. 2, we show the calculation result for the
gate time � � 5�0. With the number of segments m �
1; 3; 5; 8, the gate infidelity is given by 10%, 4.9%, 1.0%,

0.1%, respectively, with the optimized parameters � and
�1;�2; . . . ;�m. We also calculate the gate infidelity for
other ion pairs, and the results are qualitatively similar. For
instance, with � � 5�0 and the number of segments m �
1; 3; 5; 8, respectively, the gate infidelity Fin is given by
5.5%, 1.8%, 0.22%, 0.07% for the two center ions (fifth and
sixth ions), and by 40%, 25%, 8.5%, 0.99% for the first and
tenth ions at the far ends of the string (the worst case).
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FIG. 2. For the two edge ions in a 10-ion array, the TP gate
fidelity as a function of the detuning � with the gate time � �
5�0, �n1 � 3, �x � 10, and the number of segments m �
1; 3; 5; 8, respectively.
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