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We show that, for any composite system with an arbitrary number of finite-dimensional subsystems, it
is possible to directly measure the multipartite concurrence of pure states by detecting only one single
factorizable observable, provided that two copies of the composite state are available. This result can be
immediately put into practice in trapped-ion and entangled-photon experiments.
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Introduction.—A number of measures have been pro-
posed to quantify entanglement (see [1] and references
therein). Originally defined as an auxiliary quantity for
the algebraic evaluation of entanglement of formation of
two-qubit systems, concurrence [2] is an entanglement
measure in its own right [3]. For the two-qubit case it has
a one-to-one correspondence with entanglement of forma-
tion [3], and it can be generalized to arbitrary-dimensional
bipartite [4,5] and multipartite [6,7] systems. Moreover, for
pure states it can be interpreted as the expectation value of
a Hermitian operator, and thus it can be measured, if two
copies of the state are available [8,9]. As a matter of fact, it
was this reinterpretation of concurrence in terms of copies
of the state that led to the first direct experimental obser-
vation of an entanglement measure [10]. There, a two-qubit
entangled state and its copy were encoded in the polariza-
tion and transverse momentum degrees of freedom, respec-
tively, of two twin photons generated via parametric down
conversion; and concurrence was measured by detecting
only a single two-qubit joint probability.

On the other hand, the experimental progress seen in the
last few years in the production and coherent manipulation
of multiparticle entangled states is tremendous. Three
photon W-type entanglement has been observed [11,12];
and three [13,14], four [12,15], and five [16] photon
Greenberger-Horn-Zeilinger (GHZ) entangled states are
now realizable. A two-atom–one-photon GHZ state has
been experimentally demonstrated [17]; three [18], four
[19], and up to six [20] ion GHZ states have also been
reported; and, very recently, a technique for scalable and
deterministic production of W-type entangled states has
successfully generated entangled W states of up to eight
ions [21]. Nevertheless, there exists a big mismatch be-
tween the progress made on the production and manipula-
tion of multiparticle entanglement and its experimental
quantification. In the experiments just mentioned, multi-
partite entanglement was verified either through the use of
quantum state tomography [18,21], quantum nonlocality
tests [11,13–17], or entanglement witnesses [12,18–21].

Quantum state tomography [22,23] provides a complete
description of the state, though is very disadvantageous
from the point of view of scalability. Quantum nonlocality
tests and entanglement witnesses [24], in contrast, require
the measurement of only a few observables; but each of
them allows the detection of the entanglement of only a
small class of states, so that—in practical terms—some a
priori knowledge of the state is necessary. And, moreover,
they typically provide a qualitative description, but do
not define an entanglement measure. Therefore a simple
scheme—involving as few measurements as possible—to
experimentally measure entanglement of multipartite sys-
tems is highly desirable.

In this Letter we show that for a composite system with
an arbitrary number of finite-dimensional subsystems it is
possible to directly measure the multipartite concurrence
of pure states by detecting only one single factorizable
observable, provided that two copies of the composite state
are available. This allows for a generalization of the single-
setting measurement scheme used in [10] to arbitrary-
dimensional multipartite systems. In particular, the scheme
is directly applicable to trapped-ion and entangled-photon
experiments, which we also discuss.

Representation of concurrence using two copies of the
state.—It was shown in [9] that the concurrence CN of an
N-partite-system pure state j�Ni 2H , can be expressed
as the following expectation value with respect to two
copies of j�Ni:

 CN��N� �
���������������������������������������������������������
h�Nj � h�NjAj�Ni � j�Ni

q
: (1)

Here A is a Hermitian operator acting on H �H , i.e., on
H 1 � . . . �H N �H 1 � . . . �H N , where H i, with
1 � i � N, is the Hilbert space associated to the ith sub-
system, in terms of which the composite system Hilbert
space H factorizes. The operator A can be written as:

 A � 4
X

fsji��g
�

P1
s1i
� . . . � PNsNi ; (2)
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where Pj�, and Pj�, �1 � j � N� are the projectors onto the
symmetric and antisymmetric subspaces H j 	H j, and
H j ^H j, respectively, of the Hilbert space H j �H j

that describes the two copies of the jth subsystem. The
antisymmetric subspace is spanned by all states that ac-
quire a phase shift of � upon the exchange of the two
involved copies, whereas the symmetric subspace is
spanned by those states that acquire no phase shift at all.
The summation is restricted to the set fsji � �g

� com-
posed of all possible ways of sorting the symbols ‘‘�’’ and
‘‘�’’ in an N-long string, such that the total amount of �
symbols is an even number, and excluding the completely
symmetric case with no ‘‘�’’ symbols at all, i.e.,
s1i s2i . . . sNi � �� . . .� . The prefactor 4 in Eq. (2) is
only a normalization factor so that CN reduces to the
original concurrence [3] for the two-qubit case. When
expressed in terms of the reduced density matrices %i,
CN , as given by Eq. (1), coincides with the multipartite
concurrence introduced in [7]:

 CN��N� � 21�N=2

����������������������������������������
�2N � 2� �

X
i

Tr%2
i

s
; (3)

where the index i labels all (2N � 2) subsets of the
N-particle system; and the %i are the reduced density
matrices of all 1 to N � 1 partite subsystems [9]. CN
vanishes exactly for N-separable states and allows for a
meaningful comparison of entanglement between systems
with different numbers of subsystems, since the N-partite
concurrence CN��N� reduces to the (N � 1)-partite con-
currence CN��N� � CN�1��N�1� for any state j�Ni �
j�N�1i � j�i that factorizes into an (N � 1)-partite state
and a one-partite remainder. Finally, for N � 2, Eq. (3)
yields the arbitrary-dimensional bipartite concurrence de-
fined in [4].
CN in terms of a single factorizable observable.—Any

term P1
s1i
� . . . � PNsNi with an even number of antisymmet-

ric factors, projects onto states that are globally symmetric,
i.e., that are symmetric with respect to the exchange of the
two copies of the entire system, and not only some sub-
systems. And indeed, the projector P� onto the globally
symmetric space H 	H is given by the sum over all
such terms. In turn, the operator A defined above in Eq. (2)
is—up to the prefactor of 4 —the projector onto all glob-
ally symmetric states with the only exception of those
states that are symmetric in every subsystem. Thus, more
formally, A reads

 A � 4�P� � P1
� � . . . � PN��: (4)

Now, the twofold copy j�Ni � j�Ni of an arbitrary pure
state j�Ni—separable or not—is always globally sym-
metric, i.e., j�Ni � j�Ni 2H 	H . On the other hand,
any term P1

s1
� . . . � PNsN , with an odd number of antisym-

metric projectors, projects onto states that are globally
antisymmetric, i.e., onto a space that is orthogonal to H 	

H . Therefore, the expectation value of such a term with
respect to a twofold copy j�Ni � j�Ni always vanishes,
which is the reason to restrict the sum in Eq. (2) to only
terms with an even number of antisymmetric projectors.
Thus, one can add to A any contribution of operators that
are supported only on H ^H without changing the value
of CN . In this particular case, it turns out most useful to add
the projector P� onto the globally antisymmetric space
H ^H , weighted with a prefactor 4. Since P� and P�
add up to the identity 1, this amounts to replacing A by ~A in
Eq. (1), being

 

~A � 4�1� P1
� � . . . � PN��: (5)

Thus, CN can be expressed in terms of one single factor-
izable observable, which is in contrast to the 2N�1 � 1
terms composing A, required to construct CN through
Eq. (2). Therefore, it can be experimentally determined
through the measurement of only one single probability pN�
to find each of all N subsystems and their copies in a
symmetric state, via

 CN��N� � 2
����������������
1� pN�

q
: (6)

Finally, it is even possible to reduce the number of sub-
systems on which to measure, as there exists a redundancy
in the N-partite measurement. Since the twofold copy
j�Ni � j�Ni of a pure state is globally symmetric, it is
indeed sufficient to determine the probability of N � 1
subsystems and copies being in a symmetric state. After
the projection of the twofold copies of any N � 1 subsys-
tems onto their symmetric subspaces, the remaining two-
fold copy is automatically projected onto its symmetric
subspace as well. Thus, the probability of finding all N
duplicate subsystems symmetric is equal to its analogous
quantity for only N � 1 subsystems, i.e., pN� � pN�1

� .
This redundancy turns out to be very useful to check

whether the system is really in a pure state. If one does
observe a finite number of events where an odd number of
subsystems is in an antisymmetric state, then this indicates
that the state in question is not pure, and needs to be
described by a density matrix %. The probability of ob-
serving an antisymmetric state gives a quantification of the
degree of mixing, which can be expressed as 1� Tr%2 �
2Tr�P�% � %�. Now, analogously to the case of P� above,
the projector P� onto the globally antisymmetric subspace
decomposes into all products of Pi�, and Pi� with an odd
number of antisymmetric factors. Therefore, adding up
the probabilities of observing the corresponding events,
allows one to experimentally determine the degree of
mixing of % with exactly the same setup used to measure
the concurrence.

Application to entangled-photon experiments.—En-
tangled photons supply us with a system to which the last
result is particularly relevant, for the single-setting-
measurement scheme used in [10] can be immediately
extended to more than two photons. In particular, the
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experiment that we have in mind is one in which the
techniques described in [11–16] to create 3, 4, or even 5
entangled photons are combined with the hyperentangle-
ment techniques described in [25] and used in [10] to
create copies of polarization states in the transverse mo-
mentum degrees of freedom, so that a multiphoton en-
tangled state is encoded into the photon’s polarizations
and the copy in the momenta. If such a state is realized
with N photons, it is only necessary to perform the two-
qubit single-photon Bell-state measurement described in
[10] on the polarization-momentum states carried by any
N � 1 of the N photons, to obtain the probability pN�1

� �
pN� of every polarization qubit and its momentum-qubit
copy being in a symmetrical state. Alternatively, other
photon spatial degrees of freedom can be used to encode
the copy as well, as, for example, the first order Hermite-
Gaussian modes, for which unambiguous perfect-
efficiency single-photon Bell-state analyzers have also
been constructed with linear optical devices [26].

Finally, we emphasize that all measurements are per-
formed locally, as the two qubits are always encoded in the
same photon; that the detection in the Bell basis can be
done by linear optics Bell-state analyzers; and that dis-
crimination among all four bell states is not required, but
rather only between the antisymmetric singlet and the
remaining symmetric Bell states. An implementation of
our single-setting detection strategy with four or five en-
tangled photons with already existing technology thus
seems feasible.

Application to trapped-ion experiments.—Trapped-ions
provide another system in which the state-of-the-art of
technology allows for an immediate implementation of
the scheme developed here. Let us consider an experiment
with 2N ions trapped in a linear Paul trap with individual
laser addressing to each ion. In a first stage of the experi-
ment a GHZ or W state is created in N ions using the
techniques described in [18–20] or [21], respectively. In
this stage, a collective motional mode is used as the ‘‘in-
formation bus’’ among the different ions on which the laser
beams shine and is brought to its same initial state in the
end. Also, as no laser beam shines on the otherN ions, their
internal states remain untouched. The result of this first
stage is an entangled state encoded into the internal state of
the first N ions, and the initial state untouched for the
2N-ion collective motional mode and internal modes of
the second N ions.

Once the entangled state is created in the firstN ions, the
same procedure is used on the second set of ions to create
the copy. After these two stages, the resulting 2N-ion state
is one in which the firstN ions share an entangled state and
the secondN ions share the copy. Then, it is just a matter of
choosing any N � 1 out of the N first ions and measuring
each one, with its copy in the second set, in the Bell basis to
obtain the probability pN�1

� and thus calculate CN using
Eq. (6). The Bell-state detection, in turn, can be performed

by running the sequence of pulses used in [23] backwards,
in which all four Bell states were created starting from the
product states of the computational basis. In this way, each
Bell state can be mapped into a different product state of
the computational basis and then finally measured with
usual (almost-unit-efficiency) state-selective fluorescence
detection [23,27].

Summary.—We showed that for a composite system,
with any number of arbitrary-finite-dimensional subsys-
tems, for which a copy of its state is available, it is pos-
sible to express the multipartite concurrence of pure states
in terms of only one single factorizable observable. This
result has immediate utility on trapped-ion and entangled-
photon experiments, for which we showed how a direct
measurement, with a single experimental setting, of the
multipartite concurrence of pure states of photons and ions
is feasible with the use of already existing technology.
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