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Gradient Learning in Spiking Neural Networks by Dynamic Perturbation of Conductances
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We present a method of estimating the gradient of an objective function with respect to the synaptic
weights of a spiking neural network. The method works by measuring the fluctuations in the objective
function in response to dynamic perturbation of the membrane conductances of the neurons. It is
compatible with recurrent networks of conductance-based model neurons with dynamic synapses. The
method can be interpreted as a biologically plausible synaptic learning rule, if the dynamic perturbations
are generated by a special class of “empiric’’ synapses driven by random spike trains from an external

source.
DOI: 10.1103/PhysRevLett.97.048104

Neural network learning is often formulated in terms of
an objective function that quantifies performance at a
desired computational task. The network is trained by
estimating the gradient of the objective function with
respect to synaptic weights, and then changing the weights
in the direction of the gradient.

If neural and network dynamics and the objective func-
tion are all exactly known functions of the weights, such
learning can be accomplished by explicitly computing the
relevant gradients. A famous example of this approach,
used with wide success in nonspiking, deterministic artifi-
cial neural networks [1], is the backpropagation (BP)
algorithm [2].

However, the relevance of BP to neurobiological learn-
ing is limited. Biological neural activity can be noisy, and
involves the highly nonlinear and often history-dependent
dynamics of membrane voltages and conductances: neu-
rons generate voltage spikes, and the efficacy of synaptic
transmission varies dynamically on a spike by spike basis
[3]. Further, the objective function in neurobiological
learning may depend on the dynamics of muscles and
external variables of the world unknown to the brain.
Similar complications are also present in analog on-chip
or robotic implementations of machine learning.

For learning in such systems, alternative strategies are
necessary. The method of weight perturbation estimates
the gradients by independently perturbing synaptic
weights, and observing the change in the objective func-
tion. Unlike BP, weight perturbation is completely “model
free” [4]—it does not depend on knowing anything about
the functional dependence of the objective on the network
weights—and can be applied to stochastic spiking net-
works [5]. The disadvantage of a completely model-free
approach is the trade-off between generality and learning
speed: weight perturbation is far more widely applicable
than BP, but BP is much faster when it is applicable.

Here we propose a method that is intermediate between
these two extremes, yet is applicable to arbitrary neural
networks. Instead of making perturbations to the synaptic
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weights, it estimates the N?> weight gradients through dy-
namic perturbation of the conductances of the N network
neurons. Our algorithm does this by exploiting a feature
generic to many models of neural networks: that inputs to a
neuron combine additively before being subjected to fur-
ther nonlinearities. Otherwise, the algorithm is model free.
Our approach generalizes the concept of node perturba-
tion, which has been proposed for training feed forward
networks of nonspiking neurons [2,6] and can be much
faster than weight perturbation [7]. We show how neural
conductance perturbations can be biologically plausibly
used to perform synaptic gradient learning in fully recur-
rent networks of realistic spiking neurons.

Spiking neural networks.—We briefly discuss the
mathematical conditions under which our assumption, that
the synaptic inputs to a single neuron combine linearly,
holds in spiking neural networks. If each neuron i is
electronically compact, it can be described by a transmem-
brane voltage V;, obeying the current balance equation
C;dV;/dt = —I™(t) — I;’"(#). The intrinsic current /" is
generally a nonlinear function of voltage and dynamical
variables associated with the spike-generating conduc-
tances in the membrane. The dynamics of these variables
may be arbitrarily complex (e.g. Hodgkin-Huxley model)
without affecting our derivations. A simple model for the
synaptic current is I;" =Y W5, (0[ V(1) — E;;]. The
time-varying synaptic conductance from neuron j to neu-
ron i is W;;s;;(¢), with amplitude controlled by the pa-
rameter W;;. Its time course is determined by s;;(z), which
could include complex forms of short-term depression and
facilitation. If the reversal potentials E;; of the synapses are
all the same, then the synaptic current can be written as
I = g.(t)[V,(t) — E¥"], where

gi(1) = ZWijSij(f) (D
J

is the sum of all postsynaptic conductances of the synapses
onto neuron i. The linear dependence of g;(f) on the
synaptic weights W;; will be critical below. However, this
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linear dependence may be embedded inside a nonlinear
network, which may be arbitrarily complex without affect-
ing the following derivations. In fact, all networks—
whether neural and spiking or neither—that depend on a
set of interaction variables s;;(r) and parameters W;;
through Eq. (1) satisfy the necessary conditions for our
derivation below.

Gradient learning. —We represent the state of the net-
work by a vector (), which includes the synaptic vari-
ables s,-j(t) and all other dynamical variables [e.g., the
voltages V;(¢) and all variables associated with the mem-
brane conductances]. Starting from an initial condition
Q(0) the network generates a trajectory from time ¢t = 0
to t =T, and in response receives a scalar “‘reinforce-
ment” signal R[€)], which is an arbitrary functional of
the trajectory. For now we assume that the network dynam-
ics are deterministic, and present the fully stochastic case
in the Appendix. Each trajectory along with its reinforce-
ment is called a “trial,” and the learning process is itera-
tive, extending over a series of trials. The signal R depends
implicitly on the synaptic weights W;;, and is an objective
function for learning. In other words, the goal of learning is
to find synaptic weights that maximize R. A heuristic
method for doing this is to follow the gradient of R with
respect to W;;. Next we derive our gradient learning rule.

Sensitivity lemma —If W;; were a time-dependent func-
tion, a variation in W;; at tlme ¢t would cause a variation in
R given by 8R/5W,»j(t); by Eq. (1) and the chain rule, this
variation is equivalent to

6R

5Wij(f) ,(t)

Because W;; is a parameter, it is constrained to take on the
same value at every time. However, Eq. (2) shows that
variations in the neural conductance g,(f) can act as proxies
for computing the effects of hypothetical time-dependent
variations in W;;. It follows that

A d o 3
=_ R
anj T[ j Bgz(t /

We call this the sensitivity lemma, because it relates the
sensitivity of R to changes in W;; with the sensitivity to
changes in g;(r). The 1mphcat10n of the lemma is that
dynamic perturbations of the variables g;(f) can be used
to instruct modifications of the szatic parameters W;;.

Gradient estimation.—In order to estimate SR/8g;(¢)
suppose that Eq. (1) is perturbed by a time-varying noise
term,

5i7(1). 2

b‘W,] t)

gi(t) = ZWijsij(t) + &(. 4)
J
The noise satisfies (£;(1)) =0 and (&;(1)&,(t)) =
26,;8(t — 1), where the angle brackets denote a trial
average. For now, let us regard this perturbation as a
mathematical device; its biological interpretation will be
discussed later.

To show that 6R/8g;(r) can be estimated from the
covariance of R and the perturbation &;(¢), use the linear
approximation R — Ry = [l dry [6R/5g,(1)]€,(t), which
is accurate when the perturbations &,(¢) are small. Here R,
is defined as R in the absence of any perturbations, & = 0.
Since the perturbations are spatially and temporally un-
correlated, it follows that

(R = R)&(1) = 022K

8g;(1)’

Because (£) = 0, the baseline R, may be replaced by any
quantity that is uncorrelated with the perturbations of the
current trial. For example, choosing R, = 0 leaves Eq. (5)
valid. However, baseline subtraction can have a large effect
on the variance of the estimate (5) when based on a finite
number of trials [8]. Thus a good choice of baseline can
decrease learning time, sometimes dramatically.

If the covariance relation of Eq. (5) is combined with the
sensitivity lemma Eq. (3), it follows that

R 1 ﬁ di((R = Ro)&(1))s;(2). ©)

(&)

2 ~
aw,; T

Synaptic learning rule.—Equation (6) suggests the follow-
ing stochastic gradient learning procedure. At each syn-
apse the purely local eligibility trace

ejj = LT dté(1)s;;(1) (7

is accumulated over the trajectory. At the end of the
trajectory, the synaptic weight is updated according to

AW;; = n(R — Ry)e;;. ®)

The update AW;; fluctuates because of the randomness in
the perturbations. On average, the update points in the
direction of the gradient, because it satisfies (AW;;)
IR/OW; j» according to Eq. (6). This means that the learn-
ing rule of Eq. (8) is stochastic gradient following.

We note one subtlety in the derivation: In the sensitivity
lemma, the synaptic variables s;;(¢) are noise free (¢ = 0),
while in Eq. (7) they are defined in the presence of pertur-
bations. However in the linear approximation, this discrep-
ancy leads to a higher order correction that is negligible for
small perturbations.

Biological interpretation.—According to the above,
synaptic weight gradients of R can be estimated by using
conductance perturbations &;(¢). Could this mathematical
trick be used by the brain? In the actor-critic terminology
of reinforcement learning [9], one can imagine that the
neurons of one brain area (the “‘actor’’) drive actions that
are assessed by another brain area (the *“critic’’), which in
response issues a global, scalar reinforcement signal R to
the actor (Fig. 1). A novel feature of our rule is that in
addition to its regular plastic synapses W;;, the actor would
receive a special class of “empiric’’ synapses from another
hypothesized part of the brain (the “experimenter’”), which
perturb the actor from trial to trial. Each plastic synapse
locally computes (by keeping track of its coincident acti-
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FIG. 1 (color online). Neurons in a recurrent network (actor),
connected by plastic (modifiable) weights W. A global reinforce-
ment signal R is broadcast by a critic to all neurons in the
network. In addition, each neuron i receives an empiric synapse
carrying perturbing input &;(¢) from an external experimenter.

vation with the perturbing input) and stores its scalar
eligibility, and multiplies this with R to undergo modifica-
tion. This idea is developed in detail elsewhere in a model
of bird song learning [10], resulting in novel, testable
predictions for synaptic plasticity in the brain.

Note that if the perturbation &;(¢) is a synaptic conduc-
tance, its mean value (&;()) must be positive. Then the
linear approximations above are expansions about the
mean conductance &;(t) = (£,(1)), rather than &;(r) = 0.
As a result, &;(r) must be replaced by the zero-mean
fluctuation 6&;(¢) = £,(r) — (£,(r)) in the eligibility trace.
In addition, the fluctuations 8&;(¢) will resemble a filtered
point process, and will not be truly white, but will have a
correlation time set by the time constant of the synaptic
currents. However, if this correlation time is short relative
to the time scale of variation in 6R/8g;(z), then the gra-
dient estimate Eq. (5) should still be accurate.

Accurate gradient estimation requires that the eligibility
trace filter out the mean conductance (£;(f)) of the empiric
synapse. If the external experimenter neurons drive the
empiric synapses at a constant or slowly varying under-
lying rate, (£;(¢)) = (£&;) is a number and this operation is
biologically plausible. It can be implemented by a simple
time average at every actor neuron.

By contrast, other proposals for stochastic gradient
learning typically rely on intrinsic sources of noise gen-
erated within the actor network [5,11,12]. If the perturba-
tions are intrinsic, their statistics depend on network
activity, and may vary rapidly during the actor trajectory.
Thus, the expected perturbation cannot be accurately esti-
mated by a time average. But because all these schemes,
like ours, depend on the subtraction of expected activity,
individual neurons would have to keep track of and filter
out (&;(1)), a time-varying expected perturbation vector
within each trial, which seems rather complex. Our algo-
rithm avoids this complexity, because the fluctuations are
injected by an extrinsic source, and are therefore indepen-
dent of the network trajectory and may be assumed to be
approximately stationary. The extrinsic experimenter ap-
proach has the additional advantage that the statistics of
exploration can be controlled without manipulation of the
actor.

Generalization to excitatory and inhibitory synapses.—
Above we assumed that all synapses have the same reversal
potential. But neurons may receive both excitatory and

inhibitory synapses, which have different reversal poten-
tials. The unmodified learning rule allows both synapse
types to perform gradient following if there are two types
of empiric synapses per neuron: an excitatory empiric
synapse used to train the excitatory synapses, and an
inhibitory empiric synapse used to train the inhibitory
synapses. But if there is only one empiric synapse per
neuron, then for both types of synapses to perform gradient
following, the rule must be modified. Let E;; and E¢; be
the reversal potentials of the regular i < j synapse and of
the empiric synapse onto the ith actor neuron, respectively.
Then we obtain a generalized sensitivity lemma

JoR SR
W, = /dtaij(t)msij(t); 9)
where
=G0~ By, 10)

is the ratio of the synaptic driving force at the i« j
synapse to the driving force of the empiric synapse at
neuron i. The stochastic gradient learning rule remains
AW;; = n(R — Ry)e;;, but with modified eligibility trace

T
eijzﬁ dta;j()€;(1)s;;(t).

For synapses with the same reversal potential as the em-
piric synapse, a;;(f) = 1, returning the original learning
rule. Even for synapses of the opposite variety, the sign of
a;; does not change with time because neural voltage is
constrained to stay between the inhibitory and excitatory
reversal potentials V; and Vi (V; = V(1) = Vi), and Eg;,
E;; €{V}, Vg}. Nevertheless, for these synapses of the
opposite variety, the term a;;(¢) adds complexity to the
simple learning rule and reduces its biological plausibility.
Generalization to multicompartmental model neu-
rons.—Suppose the model neuron is not isopotential, but
has several dendritic compartments. Then it can be trained
without modification of the learning rule by using a sepa-
rate empiric synapse for each compartment. Alternatively,
a single empiric synapse could be used for the whole
neuron, but with the introduction of complexities in the
learning rule similar to the a;;(¢) factor of Eq. (10).
Technical issues.—Our synaptic learning rule performs
stochastic gradient following, and therefore shares the
virtues and deficiencies of all methods in this class [13].
For example, it is possible to become stuck at a local
optimum of the objective function. The stochasticity of
the gradient estimation may allow some small probability
of escape, but there is no guarantee of finding a global
optimum. Like all gradient-based learning techniques, our
algorithm works when the gradient of the expected value of
R with respect to the synaptic weights W;; is well defined.
Comparison with previous work.—If the perturbation
&;(1) is Gaussian white noise, our learning rule can be
derived exactly using the REINFORCE formalism, where
eligibility is defined as the derivative of the log probability
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of the network state, rather than by using linear approx-
imations. Thus, for Gaussian white noise our rule can be in-
cluded as a member of the REINFORCE class of algorithms
[12]. More generally, however, our perturbative methodol-
ogy 1is complementary to REINFORCE, and unlike
REINFORCE for most non-Gaussian perturbations, will al-
ways produce learning rules that are linear in the perturba-
tion. Further, REINFORCE requires that the part of the
probability density function (PDF) of the network state
involving the weights W;; be smooth, a condition that
can seriously affect the applicability of REINFORCE theory:
for example, a network of neurons perturbed by a noise &
generated from a point process by filtering a random spike
train cannot be treated by REINFORCE. By contrast, our
linear response-based derivation can handle nonsmooth
PDF’s involving W;; so long as the injected perturbations
are small. In short, our linear response approach is appli-
cable whenever REINFORCE is, and generally results in a
different plasticity rule; it is also often applicable when
REINFORCE is not.

The sensitivity lemma permits us to derive rules for
synaptic gradient learning based on perturbations of quan-
tities not directly related to the synaptic parameters.
Versions of the sensitivity lemma have appeared in the
literature for nonspiking feed forward networks, and been
used to estimate the gradient by serially perturbing one
neuron at a time (node perturbation) [6,14]. Our version of
the sensitivity lemma is more general, because it is appli-
cable to learning trajectories in recurrent networks, via
parallel perturbation of multiple neurons.

We are grateful to Xiaohui Xie for helpful discussions.
For thoughtful comments on the manuscript, we thank H.
Sompolinsky, Y. Loewenstein, and U. Rokni. I. F. acknowl-
edges funding from NSF PHY 99-07949.

Appendix: Stochastic networks.—Above the network
dynamics and reinforcement R were assumed to be deter-
ministic. Both elements can be made stochastic, as outlined
below. Consider the case of discrete time (continuous time
is a limiting case). The network generates a trajectory {) =
{Q(0), Q(1), ..., Q(T)} from a probability density Py (£2).
Suppose each trajectory is generated by drawing an initial
condition Q(0) from some probability density and then
drawing (1) through Q(T) from a Markov process with
transition probability Py [Q(z)|Q(z — 1)]. The assumption
of Markov transition probabilities is compatible with most
spiking neural network models. The network receives re-
inforcement R from the conditional density P(R|(}). Since
the network is parametrized by W, the expected reward

(R) = f RP(RIQ)Py(Q)dRDO  (Al)
is a function of W. We assume that the transition proba-
bility depends on the weights W through

PylQ)IQ(r — 1)] = f(g1(1), ..., gn(D),

where as before

(A2)

gi(t) = ZWijsij(t —1). (A3)
J

The transition probability depends on all the dynamical
variables in €)(z), although they have been suppressed for
notational simplicity in Eq. (A2). As before, the important
mathematical property here is the linearity of Eq. (A3),
which is embedded inside a nonlinear system. The sensi-
tivity lemma takes the form

R &9
aVV!" =1 agl(t)

The sensitivity lemma shows that the appropriate change in
the weight of a synapse is not given by the covariance of its
activity with reinforcement (as might be naively expected),
but is instead given by the derivative with respect to g;(z) of
this covariance. As before, the proof of the sensitivity
lemma involves comparing derivatives of the reinforce-
ment—synaptic activity correlations convolved with the
transition probabilities, taken with respect to W;; and g;(1),
without actually performing either differentiation. [Note
that REINFORCE requires the stronger condition that the log
probability InPy,(€)) be differentiable]. For small pertur-
bations &;(z), this sensitivity lemma leads us again to the
gradient learning rule of Eqgs. (7) and (8), now valid for
fully stochastic networks.

(Rs;;(t — 1)). (A4)
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