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We discuss the possibility of the coexistence of spin density waves (antiferromagnetism) and triplet
superconductivity as a particular example of a broad class of systems where the interplay of magnetism
and superconductivity is important. We focus on the case of quasi-one-dimensional metals, where it is
known that antiferromagnetism is in close proximity to triplet superconductivity in the pressure versus
temperature phase diagram. Over a range of pressures, we propose an intermediate nonuniform phase
consisting of antiferromagnetic and triplet superconducting orders. In the coexistence region, we propose
a flop transition in the spin density wave order parameter vector, which affects the nature of the
superconducting state and leads to the appearance of several new phases.
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The competition or coexistence of magnetic order and
superconductivity is a very important problem in con-
densed matter physics. There is a broad class of systems
that presents magnetic order and superconductivity in close
vicinity. One of the most important systems is copper
oxides, where singlet superconductivity (SSC) is found
next to antiferromagnetism [1]. Another interesting system
is strontium ruthenate Sr2RuO4, where the proximity to
ferromagnetism (FM) has been argued as being important
to the existence of possible triplet superconductivity (TSC)
in these materials [2]. Furthermore, the ferromagnetic
superconductors ZrZn2 and UGe2 have stimulated a de-
bate on the coexistence of ferromagnetism and triplet or
singlet superconductivity [3,4]. However, unlike any of
these previous examples, we discuss in this Letter a
three-dimensional but highly anisotropic organic super-
conductor, the Bechgaard salt �TMTSF�2PF6, which has a
phase diagram of neighboring antiferromagnetism with
well defined spin density wave (SDW) order and triplet
superconductivity [5]. At first glance, the TSC and SDW
orders would avoid coexistence since the two orders are
competing to correlate electrons in the triplet and singlet
spin sectors, respectively. For instance, the presence of
SDW order would disrupt TSC in a more dramatic way
than it would SSC, while the FM order would disrupt SSC
more than TSC. Therefore, it is easier to find in nature
examples of coexistence of SSC and SDW or TSC and FM,
while the conditions to find the coexistence of TSC and
SDW are much more stringent, as discussed in this Letter.

The antiferromagnetic state of �TMTSF�2PF6 is present
at temperatures T < 12 K and pressures P< 6 kbar and is
characterized by a spin density wave [5]. The SDW order
parameter N (Néel vector) has a small anisotropy with the
easy axis along the crystallographic b0 axis [6], which is
also the intermediate direction for conductivity. This anti-
ferromagnetic state is suppressed at pressures higher than
6 kbar, where a superconducting instability takes over at
low temperatures (T < Tc � 1:2 K). This superconducting
state is very likely to be triplet, as suggested by upper

critical fields [7] and NMR [8] measurements. Recent
experiments [9–11] suggest a region of macroscopic co-
existence of TSC and SDW, where both orders are non-
uniform. This coexistence region can be related to ex-
isting theoretical proposals. For instance, strictly one-
dimensional theories invoking SO(4) symmetry [12] or
negative interface energies [13] have allowed for coexist-
ing TSC and SDW. However, these previous theories are
not directly applicable to three-dimensional but highly
anisotropic superconductors such as the Bechgaard salts,
where the SO(4) symmetry is absent, and negative inter-
face energies are not necessary conditions for the
coexistence.

The main results described in this Letter are as follows.
First, we derive microscopically the pressure versus tem-
perature phase diagram indicating the TSC, the SDW, and
the TSC-SDW phases and show that the TSC and SDW
order parameters are both nonuniform in the coexistence
region. The suggestion of SDW and TSC coexistence is
consistent with recent experimental results [11]. Second,
we show explicitly that the SO(4) theories [12] cannot
describe these highly anisotropic three-dimensional sys-
tems. Finally, we propose that external magnetic fields
cause a canting transition of the SDW order parameter
which alters the nature of the TSC state in the coexistence
region since SDW and TSC are coupled. In addition to the
normal phase, we find new phases in the magnetic field
versus temperature phase diagram near the critical
pressure.

The compound �TMTSF�2PF6 can be described approxi-
mately by an orthorhombic lattice with dispersion

 �k � �jtxj cos�kxa� � jtyj cos�kyb� � jtzj cos�kzc�; (1)

where transfer integrals jtxj, jtyj, and jtzj satisfy the rela-
tions jtxj � jtyj � jtzj representing the quasi-one-
dimensionality. Here a, b, and c correspond to unit cell
lengths along the crystallographic axes a�x�, b0�y�, and
c��z�, respectively.
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We use natural units (@ � kB � c � 1) and work with
Hamiltonian H �H 0 �H int, where the noninteracting
part is H 0 �

P
k;���k ���c

y
k;�ck;�, with � the chemical

potential. The interaction part is

 H int �
X

kk0p

X
����

V�k;k0�dy���k;p� 	 d���k0;p�

�
X

kk0q

X
����

J�q�sy���k;q� 	 s���k0;q�; (2)

where the first and second terms describe interactions
in TSC and SDW channels, respectively. These inter-
actions allow for the possibility of competition or co-
existence of TSC and SDW instabilities at low tempera-
tures. Here �, �, �, and � are spin indices and k, k0, p,
and q represent linear momenta. The vector opera-
tor dy���k;p� 
 cyk�p=2;�v��c

y
�k�p=2;�, and sy���k;q� 


cyk�q=2;����ck�q=2;�. The matrix v�� � �i��y���, and
�i are Pauli matrices. In the case of weak spin-orbit
coupling, the TSC interaction V�k;k0� can be chosen as
V�k;k0� � Vh��k;k0����k����k0�, where V is a prefac-
tor with a dimension of energy, and h��k;k0� ����k��
characterizes the momentum dependence [symmetry basis
function] for an irreducible representation � of the ortho-
rhombic D2h group [14,15]. Without loss of the generality
regarding symmetry properties, we take h��k;k0� � 1 and
consider only unitary triplet states corresponding to px
symmetry.

The order parameter for TSC can be defined as D�p� �
h
P

k;��V���k�d���k;p�i, while the SDW order parameter
can be defined as N�q� � J�q�h

P
k;��s���k;q�i. With

these definitions, the effective Hamiltonian is

 H eff �H 0 �H TSC �H SDW; (3)

where the TSC contribution is H TSC �
P

p�Dy�p� 	P
k;�����k�d���k;p� � H:c:� �

P
pDy�p� 	 D�p�=V, and

the TSC term is H SDW �
P

q�N��q� 	
P

k;��S���k;q� �
H:c:� �

P
qN��q� 	 N�q�=J�q�. The effective action of

this Hamiltonian is obtained by integrating out the fermi-
ons, where the quadratic terms are
 

STSC
2 �

X
p
A�p�Dy�p� 	D�p�;

SSDW
2 �

X
q
B�q�N��q� 	 N�q�;

(4)

where coefficients A�p� and B�q� can be obtained from
their corresponding diagrams. Notice that the two order
parameters D�p� and N�q� do not couple to quadratic order,
because TSC and SDW are instabilities in the particle-
particle and particle-hole channels, respectively. In addi-
tion, notice that we have neglected the small anisotropy in
the SDW order parameter [6], but we will include this small
anisotropy due to spin-orbit coupling later when discussing
the effects of a magnetic field.

Next, we make the following assumptions. First, we
assume that the saddle point TSC order parameter is domi-
nated by the zero center-of-mass momentum component
D0 
 D�p � 0�. Second, we assume that the saddle point
SDW order parameter N is a real vector in coordinate space
and that it has Fourier components determined by Fermi
surface nesting vectors q � Qi � �
Qa;
Qb;
Qc� [5].
In this case, the coefficients B�Qi� are identical for all Qi’s,
since the lattice dispersion is invariant under reflections
and inversions compatible with the D2h group. In addition,
the coefficients of all higher order terms involving N�Qi�
share the same symmetric property. Given that N�r� is real,
and that we have periodic boundary conditions, we can
choose a specific reference phase where N�Qi� are real and
identical. Thus, we define N0 
 N�Qi� for all i, and the
quadratic terms are dominated in the long wavelength limit
by STSC

2 � A�0�jD0j
2 and SSDW

2 � �m=2�B�Q1�jN0j
2, re-

spectively. Here m is the number of nesting vectors, and
Q1 � �Qa;Qb;Qc� is chosen for definiteness.

Although the order parameters for TSC and SDW do not
couple to quadratic order, the coupling between D and N in
fourth order is given by

 SC4 � �C1 � C2=2�jD0j
2jN0j

2 � C2jD0 	 N0j
2; (5)

where coefficients C1 and C2 can be obtained from their
corresponding diagrams. Notice that, because there are
several distinct nesting vectors, the diagram corresponding
to the coupling term is not unique. However, the contribu-
tion of these distinct diagrams is identical, due to symme-
try of the dispersion relation compatible with the D2h
group. The second term in Eq. (5) can be parametrized
as C2cos2�	�jD0j

2jN0j
2, where cos2	 
 jD0 	 N0j

2=
jD0j

2jN0j
2 � 1 is independent of jD0j and jN0j. Since

we consider only a unitary state D0 for TSC, its global
phase can be eliminated, and 	 can be regarded as the angle
between D0 and N0. The coefficient C2 for �TMTSF�2PF6

is positive, indicating that D0 and N0 are not free to rotate
independently but are tending to be aligned (	 � 0) or
antialigned (	 � 
).

Additional fourth order terms are

 STSC
4 � D1jD0j

4; SSDW
4 � D2jN0j

4; (6)

where coefficients D1 and D2 are obtained diagrammati-
cally. However, it should be emphasized that there are
several distinct diagrams that contribute to SSDW

4 , due to
different combination of nesting vectors. Unlike the case
for SC4 , the contributions of distinct diagrams for SSDW

4 are
not identical. The effective action is

 Seff � S0 � S
TSC
2 � SSDW

2 � S4; (7)

where S0 is the normal state contribution, and S4 �
D1jD0j

4 �D2jN0j
4 � C�	�jD0j

2jN0j
2, with C�	� � C1 �

C2=2� C2cos2	. The phase diagram that emerges from
this action leads to either bicritical or tetracritical points as
illustrated in Fig. 1. When R � C2�0�=�4D1D2�> 1, the
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critical point �Pc; Tc� is bicritical and there is a first order
transition line at �m=2�B�Q1� � A�0� when both B�Q1�<
0 and A�0�< 0, as seen in Fig. 1(a). However, when R< 1,
�Pc; Tc� is tetracritical and a coexistence region of TSC and
SDW occurs when both B�Q1�< 0 and A�0�< 0, as shown
in Fig. 1(b). Notice that the action Seff obtained in three
dimensions is not SO(4) invariant, and SO(4) symmetry
based theories [12] can be applied only to one-dimensional
systems but not to the highly anisotropic but three-
dimensional Bechgaard salts.

The ratio R � 0:12 for the Bechgaard salt �TMTSF�2PF6

around �Pc; Tc�, when the interaction strengths V, J are
chosen to give the same Tc � 1:2 K at quarter filling for
parameters jtxj � 5800 K, jtyj � 1226 K, jtzj � 58 K,
used in combination with ���k� � sin�kxa� (px symmetry
for TSC) and the nesting vectors Q��

=2a;

=2b;0�.
Our analysis shows that �TMTSF�2PF6 has a TSC-SDW
coexistence region as suggested by experiments [9–11].
However, our results are in contrast with an SO(4) based
theory, which predicted a no-coexistence region [12].

To investigate the TSC-SDW coexistence region, the
effective action (7) is Fourier transformed into real space
to give the Ginzburg-Laudau (GL) free energy density

 F � F n �F TSC �F SDW �F C; (8)

where F n is the normal state contribution, and F C �
C�	�jN�r�j2jD�r�j2 is the coupling term of the two order
parameters. For the Bechgaard salt parameters, the prefac-
tor C�0� of the coupling term F C is positive and, hence,
represents a local repulsive interaction between the TSC

and SDW order parameters. As a consequence, the TSC
order parameter is nonuniform in the TSC-SDW coexis-
tence region and has a modulation induced by the SDW
order parameter. Since R� 1 for �TMTSF�2PF6, the
coupling term F C is small in comparison with the other
fourth order terms, and a perturbative solution is possible
for jD�r�j and jN�r�j. At assumed zero TSC-SDW cou-
pling F C � 0, the saddle point modulation for the SDW
order parameter is N�r� � mN0 cos�Q1 	 r�, with jN0j �

��mB�Q1�=3D2�
1=2, while the saddle point magni-

tude for the TSC order parameter is jD�r�j � jD0j �

��A�0�=2D1�
1=2. Including the coupling F C, the new so-

lution for the magnitude of TSC order parameter is
 

jD�r�j � jD0j � �v
jN0j

2

jD0j
R1=2

�
cos�2Qax�

4� 8�2
xQ

2
a
�

cos�2Qby�

4� 8�2
yQ

2
b

�
cos�2Qax� cos�2Qby�

4� 8�2
xQ

2
a � 8�2

yQ
2
b

�
1

4

�
; (9)

which shows explicitly 2Qa and 2Qb modulations along
the a and b0 axes, respectively. Here �i � �j�iiTSC=A�0�j�

1=2

represents the TSC coherence length along the i direction,
and v � �6D2=D1�

1=2. The qualitative behavior of jD�r�j is
shown in Fig. 2(a). The solution for the magnitude of SDW
order parameter to the first order correction is shown in
Fig. 2(b). Notice that the maxima of jD�r�j coincide with
the minima of jN�r�j indicating that the two orders try to be
locally excluded. Since the TSC and SDW modulations are
out of phase, experiments that are sensitive to the spatial
distribution of the spin density or Cooper pair charge
density may reveal the coexistence of these inhomogene-
ous phases.

Next, we analyze the effect of magnetic fields on this
coexistence region. A uniform magnetic field H couples
with charge via the Peierls substitution k! k� jejA in
the dispersion relation given in Eq. (1), where A is the
vector potential, and couples with spin via the paramag-
netic term H P � ��0H 	

P
k;��c

y
k����ck�, where�0 is

the effective magnetic moment. Upon integrating out the
fermions, the corresponding effective action is

 Seff�H� � S0�H� � STSC
2 �H� � SSDW

2 �H� � S4�H�; (10)

a x

y

D

b x

y

N

FIG. 2 (color online). Magnitude of (a) TSC and (b) SDW
order parameters in the x-y plane, within the coexistence region.
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FIG. 1 (color online). Phase diagrams indicating (a) first order
transition line with a no-coexistence phase and (b) two second
order lines with a coexistence region between the TSC and SDW
phases. The P-T phase diagrams are obtained by assigning the
standard linear temperature and pressure dependence on the GL
coefficients around the critical point, i.e., A�0� / �T � TTSC�P��,
with TTSC � Tc � �TSC�P� Pc�, and B�Q1� / �T � TSDW�P��,
with TSDW � Tc � �SDW�Pc � P�. Here �TSC and �SDW are both
positive.
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where S0�H� � S0 � jHj2=8
� 
njHj2=2, 
n is the uni-
form electronic spin susceptibility of the normal state,
STSC�SDW�

2 �H� is obtained from STSC�SDW�
2 by the Peierls

substitution, and S4�H� � S4 � �E1 � E2=2�jHj2jD0j
2 �

E2jH 	D0j
2 � �F1 � F2=2�jHj2jN0j

2 � F2jH 	 N0j
2. A

detailed calculation shows that the coefficient E1 �
�E2=2; hence, the coupling of H to D can be described
in the more familiar form �

P
ijHi
ijHj=2, where 
ij �


n�ij � E2D
�
i Dj.

For Bechgaard salts, the coefficients E2 < 0 and F2 > 0,
indicating that D and N prefer to be perpendicular to the
magnetic field H. These conditions, when combined with
C2 > 0 in Eq. (5), indicate that D and N prefer to be
parallel to each other but perpendicular to H. However,
the relative orientation of these vectors in magnetic fields is
affected by small spin anisotropy effects which were al-
ready observed in �TMTSF�2PF6, where the easy axis for N
is the b0 direction [6]. Such an anisotropy effect can be
described by adding a quadratic term �uNN2

b0 , with uN >
0, which favors N k b0. Similarly, the D vector also has
anisotropic effect caused by spin-orbit coupling and can be
described by adding a quadratic term �uDD2

i , where i is
the easy axis for TSC. (Quartic TSC and SDW terms also
become weakly anisotropic.)

However, a sufficiently large H k b0 can overcome spin
anisotropy effects and drive the N vector to flop onto the
a-c� plane. This canting (flop) transition was reported [6]
in �TMTSF�2PF6 for H � 1T at zero pressure and T �
8 K. If such a spin-flop transition persists near the TSC-
SDW critical point (Pc, Tc), then the flop transition of the
N vector forces the D vector to flop as well and has
potentially serious consequences to the superconducting
state. For P< Pc, if a flop transition occurs for HF <
H1�0� [see Fig. 3(a)], then N flops both in the pure SDW
and in the TSC-SDW coexistence phases, in which case it
forces D vector to flop as well. If the flop transition occurs
for HSDW�0�<HF <H1�0� (not shown), then only the
pure SDW phase is affected. This situation is qualitatively
different for P> Pc. In the zero (weak) spin-orbit coupling

limit, the D vector is free to rotate in a magnetic field and
tends to be perpendicular to H. Thus, for H k b0 and jHj>
H2�T�, the D vector lies in the a-c� plane since there is no
SDW order. However, at lower temperatures and small
magnetic fields when TSC and SDW orders coexist, the
spin anisotropy field forces N to be along b0 and N forces D
to flop from the a-c� plane to the b0 direction. This canting
transition occurs at HF <H2�T� [see Fig. 3(b)]. However,
in the case of coexistence of SDW and singlet supercon-
ductivity, there would be no vector coupling between SDW
and SSC, and thus the canting transition of the SDW has no
effect on the SSC order parameter.

In summary, we showed that the TSC and SDW order
parameters can coexist in the P-T phase diagram of quasi-
one-dimensional organic conductors in agreement with
recent experiments. We find that the TSC order parameter
is nonuniform in the coexistence region and that its modu-
lation is induced via the SDW order parameter. We also
showed that theories based on SO(4) symmetry cannot be
applied to these highly anisotropic three-dimensional sys-
tems, since they are strictly valid only in the one-
dimensional limit. Furthermore, we discussed qualitatively
magnetic field effects on the coexistence region. We pro-
posed that a magnetic field induced canting transition of
the SDW order parameter affects dramatically the phase
diagram of the coexistence region, both below and above
the critical pressure.
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FIG. 3 (color online). H-T phase diagrams showing the TSC-
SDW coexistence region (thick solid line) and canting transitions
(double line) for (a) P< Pc and (b) P> Pc.
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