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We study the effect of disorder on the intrinsic anomalous Hall conductivity in a magnetic two-
dimensional electron gas with a Rashba-type spin-orbit interaction. We find that anomalous Hall
conductivity vanishes unless the lifetime is spin-dependent, similar to the spin Hall conductivity in the
nonmagnetic system. In addition, we find that the spin Hall conductivity does not vanish in the presence of
magnetic scatterers.
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The spin-orbit interaction (SOI) in semiconductors al-
lows optical and electrical control of spins and, because of
this, has recently attracted much attention in the field of
spintronics. The SOI gives rise to unusual Hall effects,
such as the anomalous Hall (AH) effect [1] in ferromagnets
and the spin Hall (SH) effect in normal conductors [2–5].
The detailed mechanisms of these effects are still contro-
versial. For the AH effect, originally an intrinsic (i.e.,
band-structure-induced) mechanism originating from an
effective magnetic field in momentum space was put for-
ward [6], followed by extrinsic mechanisms, referred to as
skew [7] and sidejump [8] scattering at impurities. Most
experiments have been interpreted in terms of the extrinsic
mechanisms, but the intrinsic AH effect has recently been
shown to quantitatively explain experiments in ferromag-
netic semiconductors [9–12]. Effects of disorder have
recently been investigated [13,14]. While a current bias
does not excite a Hall voltage in normal metals at zero
external field, a Hall effect of spin currents should persist
in the presence of an intrinsic or extrinsic SOI. This spin
Hall effect was originally predicted assuming extrinsic
scattering [2,3], but, analogous to the AH effect, an intrin-
sic SH effect is also possible. Murakami et al. [4] predicted
that the effective magnetic field associated to the Berry
phase in the valence band induce drift of up and down spin
carriers towards opposite directions in p-doped zinc-
blende-type semiconductors. Sinova et al. [5] found a
universal spin Hall conductivity for the two-dimensional
electron gas (2DEG) with a Rashba-type SOI.

Recently, two groups [15,16] reported optical detection
of spin accumulation of opposite signs at the sample edges
in current-biased nonmagnetic semiconductors. Such be-
havior can be caused by the extrinsic SH effect, as shown
explicitly by Ref. [17] and is believed to be a signature of
the intrinsic SH effect as well. However, the interpretation
of the experimental results is not straightforward.

Current theories predict that the intrinsic SH effect can
be strongly suppressed by disorder effects. Especially, the
intrinsic SH current vanishes identically by disorder scat-
tering of electrons in the bulk of a Rashba-split 2DEG [18–
20]. On the other hand, the Rashba-split 2DEG is rather
special in this respect, since in other systems the intrinsic
SH effects survives disorder scattering. This has been
demonstrated for 2DEGs with an SO interaction that is
not directly proportional to the wave vector and for three-
dimensional systems in the presence of the Dresselhaus SO
interaction or a Luttinger type of SO interaction in the
valence band [21–23].

Since one may view the SH effect as the zero-
magnetization limit of the AH effect, the impurity-induced
suppression of the intrinsic SH in a Rashba-split 2DEG
raises the issue of whether the intrinsic AH effect is
affected equally strongly by disorder scattering. And can,
vice versa, the intrinsic SH effect survive in a disordered
system when magnetic effects are added, e.g., carrier scat-
tering by magnetic impurities? These are the questions we
address in this Letter. We focus on a disordered 2DEG with
the intrinsic Rashba-type SOI and investigate the effects of
a constant exchange potential as well magnetic impurities
on the AH and SH effects by generalizing the method we
applied previously [18,24] to calculate the conductivity in
the diffusive transport regime.

We will show that the intrinsic AH conductivity in a
Rashba-split 2DEG with uniform exchange splitting van-
ishes unless the lifetime is spin-dependent, which is correct
up to the second order of the SOI. This exemplifies the
strong similarity between SH and AH effects. We also find
that the SH conductivity is nonzero in the presence of
magnetic impurity scattering. These results are not only
relevant for a full understanding of the Hall effects [25]
but should also apply to high g-factor, high-mobility
narrow-gap magnetic semiconductors such as n-type
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HgTejHgCdTe quantum wells that exhibit many of the
features needed for a clean observation of the intrinsic
SOI-induced Hall effect in a transport experiment [26].

We start with the Hamiltonian

 H � H0 � Vm; (1)

where H0 is the unperturbed Hamiltonian for the 2DEG
and Vm the random potential caused by impurities. For the
nonmagnetic 2DEG, H0 equals the Rashba Hamiltonian
HR. In Pauli spin and momentum space, we have

 HR �
@

2

2m
k21� �@�ky�x � kx�y�; (2)

where k� � kx � iky with in-plane momentum vector k �
�kx; ky�, � is the tunable strength of the spin-orbit coupling,
and ���� � x; y; z� are the Pauli spin matrices. The eigen-
values of HR are given as Ek� � �@2k2=2m� � �@k, and
the eigenfunctions are denoted as js � �i.

In order to deal with the AH and SH conductivities in the
diffusive transport regime, we modify the Hamiltonian
accordingly. In the calculation of the AH conductivity,
the unperturbed part of the Hamiltonian is given as H0 �
HR � �ex�z, where the second part expresses an exchange
potential. The random potential is supposed to be short-
ranged and isotropic, but may be spin-dependent:

 Vm �
X
i��";#

V���r�Ri�: (3)

In the calculation of the SH conductivity, on the other hand,
the unperturbed Hamiltonian is HR, but we incorporate
magnetic impurities that give rise to spin-flip scattering
of electrons:

 Vm � 2J
X
i

s � S��r�Ri�; (4)

where s and S are the spin operators of the conduction
electrons and the localized magnetic impurities, respec-
tively, and J is their exchange coupling. We consider the
regime in which the Kondo effect is not important.

We compute the transport properties via the Kubo for-
mula, using the charge and spin current operators

 Jx�y� � e��@=m�kx�y�1� �����y�x�	; (5)

 J�zy � �@2=2m�ky�z; (6)

respectively, where the latter is defined by J��x�y� �
@f�x�y�; ��g [27]. In the diffusive regime, it is convenient
to include the SOI in the eigenstates of the Hamiltonian
and treat the impurity potentials as perturbation. We can
then proceed to obtain the AH and SH conductivities as
before by adopting the Born approximation for the self-
energy and the ladder approximation for the current vertex
that is determined self-consistently in order to satisfy the
Ward identity.

After a lengthy but straightforward calculation along the
lines of Refs. [18,24], we obtain the full expression (not

shown) for the AH conductivity in terms of retarded and
advanced Green functions in the Pauli spin space. The
momentum integration of the products of retarded and
advanced Green function can be done analytically by
assuming �
 �ex, keeping terms up to �2 and in the
clean limit with lifetime broadening being smaller than
the Rashba splitting of the bands.

By ignoring the real part of the self-energy �� �
�n=L2�

P
kjV

2
�jgk�, where n=L2 is the impurity density,

and with lifetime �� � @=2j��j, we obtain
 

�AH
yx �

4e2�2D0

4�2
ex � �j�"j � j�#j�

2

�
��F"j�#j�" � �F#j�"j�#

�
��F"�" � �F#�#�2

��"�#�
1=2

�ex�j�"j � j�#j � C�

4�2
ex � C

2

�
; (7)

where D0 � me=2�@2 is the 2DEG density of states and

 �F"�#� � �F � ����ex; (8)

 C � �nD0�V" � V#�2 � �
���������
j�"j

q
�

���������
j�#j

q
�2: (9)

The first two terms inside the square brackets in Eq. (7) are
the nonvertex (bubble) part, and the last one originates
from the vertex correction.

We can simplify the expression for �AH
yx further, assum-

ing that �ex � j�"j, j�#j, �"�#� � ��1� �����, with �

1, neglecting the self-energy part in the denominator.
Expanding up to �2

 �AH
yx � �

SO
xx

�
�F
�ex

�
2 j�j

�ex
�2; (10)

where �SO
xx � 2e2�D0�

2 is the correction to the longitudi-
nal conductivity by the SOI in the presence of nonmagnetic
impurities, and � � @=2j�j [24].

This is our main result for the AH conductivity. We can
draw several conclusions from the above expression. First,
we very generally find that �AH

yx � 0 when the carrier
lifetime is spin-independent. This follows already from
inspection of Eq. (7), and we verified that this statement
is valid even when the real part of the self-energy is
retained. We note the similarity with the SH conductivity
which vanishes by introducing electron scattering by non-
magnetic impurities. The result emphasizes the role of the
ferromagnetism in the AH effect as a filter that converts an
intrinsic spin current into a charge current. When, as in the
Rashba 2DEG, the SH current vanishes, the AH effect
naturally vanishes as well. Note, however, again in analogy
with the SH effect, the AH effect does not have to vanish
for ferromagnets with different band structures. Also,
whereas the AH effect vanishes, the exchange interaction
does induce a finite SH current in a Rashba 2DEG.

Second, the AH conductivity is proportional to �2 and
(like �j�j) independent of the lifetime �, very similar to the
extrinsic AH conductivity based on the sidejump mecha-
nism [28]. Our expression is not identical to that for side-
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jump scattering, however; for example, Crepieux and
Bruno [29] obtained a nonzero result even in the limit �" �
�# for a finite magnetization. Skew scattering does not
occur in our model since the SOI is intrinsic and homoge-
nous, and carrier scattering is caused by a normal impurity
potential.

Finally, the AH conductivity is odd with respect to the
magnetization M, since �ex / M. Therefore, the AH con-
ductivity changes sign when the magnetization is reversed,
as expected. We see in Eq. (12) �AH

yx increases with de-
creasing M. Although Eq. (12) may not be strictly valid for
M ! 0 because we assumed �� j�"j, j�#j, �AH

yx has to
vanish in this limit. Thus, we expect a nonmonotonic
dependence of �yx on M.

We now turn to magnetic impurity effects on the SH
conductivity. To this end, we will introduce spin-dependent
random potentials into a Rashba-split 2DEG. The random
potentials of V� are not suitable for the present purpose,
since hV�i is spin-dependent which gives rise to a finite
exchange potential (and SH effect) in the lowest order
approximation. We therefore adopt an s-d type interaction
��r�Ri�s � Si between conduction electron s and local-
ized impurity spins Si at sites Ri. This type of interaction is
isotropic, and no first order correction appears. This iso-
tropy persists in the presence of the Rashba SOI, so the
self-energy and Green function are diagonal in the js � �i
space which is a convenient basis. The self-energy in the
Born approximation is proportional to the thermal average
hS2i, which consists of three contributions, one from spin-
conserving scattering h�zSz�zSzi and two from spin-flip
scattering h��S���S�i and h��S���S�i. Accordingly,
the self-energy

 j�j ’
@

2

�
1

�0
�

1

�sf

�
(11)

is governed by two scattering rates. 1=�0 and 1=�sf corre-
spond to the hS2

zi and �1=2�hS�S� � S�S�i contributions,
respectively. In our case, 1=�sf � 2=�0, since the poten-
tials are isotropic.

After evaluating the vertex corrections self-consistently,
we may define an effective current vertex as

 

~J kk
x � e

�
@

m
kx1�

�� �0

k
�kx�z � ky�y�

�
; (12)

where �0 is an effective SOI originating from the vertex
corrections that is the solution of

 �0 � �h�2
mi�A� ��� �0��B�D�	; (13)

with

 h�2
mi �

nmJ2hS2
zi

4L2 ; (14)

where nm=L2 is the density of magnetic impurities. The
expression of the current vertex �0 is apparently [18,24] the
same for magnetic and nonmagnetic impurities except for

the definition of h�2
mi. A, B, andD are momentum integrals

over products of retarded and advanced Green functions
that can be integrated analytically, such that

 �0 � ��0=�8� 7�0�; (15)

with �0 � �2�0�kF�2 for magnetic impurities. Here h�2
mi

has been inverted to �0 using the relation hS2
zi � hS

2i=3.
Note that �0 � �� for nonmagnetic impurities [18]. The
final result of the SH conductivity is the same for magnetic
and nonmagnetic impurities

 ��zyx � e��� �0�=4�@�: (16)

We therefore find that the SH conductivity, which has been
found before to vanish for nonmagnetic impurities, be-
comes finite in the presence of magnetic impurities. This
is our main result concerning the SH effect.

There are two main reasons for the different SH con-
ductivities for magnetic and nonmagnetic impurities. The
matrix elements for the magnetic potential include terms
hs � �j�zjs � �i, while in the nonmagnetic case the
corresponding matrix elements are hs � �j1js � �i
which have the opposite sign. The other reason is h�2

mi,
which is proportional to hS2

zi not hS2i as in the self-energy,
because the hS�S� � S�S�i term couples with the linear
terms of kx or ky and vanishes in the momentum integral.
Therefore, the vertex function includes only �0, while the
self-energy basically includes both �0 and �sf.

The present results modify the expressions we obtained
previously [18,24] for the longitudinal charge conductivity
and the in-plane spin accumulation, as follows:

 �xx � 2e2�0

�
n0

m
�D0�2 � ���� �0�

D0

2

�0

1� �0

�
; (17)

 hsyi � 4�eD0�0

�
�� ��� �0�

2� �0

1� �0

�
E; (18)

where n0 is the carrier density, and E is the applied electric
field. Since these observables do not vanish under the
vertex correction even for nonmagnetic impurities, the
effect of introducing magnetic impurities is small.

Finally, let us consider the coexistence of magnetic and
nonmagnetic impurities. Since there is no mixing between
magnetic and nonmagnetic scattering, the current vertex is
still defined by Eq. (12), but now we have �0 � �0m � �0n,
where �0m and �0n are effective SOIs caused by the magnetic
and nonmagnetic impurities, respectively. Both satisfy
Eq. (13) with h�2

mi for �0m and with h�2
ni � nnhV

2i=4L2

for �0n. Here nn=L2 and V are the density and potential of
the nonmagnetic impurities, respectively. Then �0 also
satisfies the relation (13) with �h�2i � h�2

mi � h�2
ni, which

determines �0 self-consistently.
The self-energy, on the other hand, is given by the sum

of the contributions from magnetic and nonmagnetic im-
purities j�j � j�m � �nj  @=2�, with
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1

�
� �nm4J2hS2i � nnhV2i	

m

@
3 : (19)

Consider varying nm and nn such that the lifetime � is kept
constant. Noting that hS2

zi � hS
2i=3 in the paramagnetic

state, the effective spin-orbit interaction is then given as

 �0 �
�
nmJ

2 4

3
hS2i�

@
3

�m

�

�
m�

2@3�
�0

1��0��nmJ
2 4

3hS
2i� @

3

�m	
m�
2@3 �2��0�

: (20)

This expression reproduces the results �0 � �� and �0 �
��0=�8� 7�0� for nm � 0 and nn � 0, respectively. At an
intermediate value of nm, �h�2i can be zero. In this case,
the vertex correction itself vanishes, and the universal spin
Hall conductivity is realized even in the presence of im-
purity scattering. The condition �h�2i � 0 means that nor-
mal impurities limit the conductance by the same amount
as magnetic impurities. Since the mobility of
HgTejHgCdTe quantum wells can be very high, and the
scattering potential of magnetic impurities is quite strong,
very small amount of magnetic impurities should be suffi-
cient to achieve complete recovery of the bulk spin Hall
effect.

These results shed some doubt on Rashba’s general
argument for a generally vanishing SH conductivity [20],
since he introduced a vector potential representing an
external magnetic field but neglected the Zeeman term.
Indeed, the latter gives rise to a nonvanishing spin Hall
current even in a Rashba-split 2DEG [30]. It should also be
noted that the present results have been obtained for an
infinite system. Finite size systems may show a nonvanish-
ing SH conductance [31] or SH accumulations at source-
drain contacts [32] and Hall edges [30,33].

In conclusion, we studied the intrinsic AH effect in the
diffusive transport regime for an exchange-split 2DEG
with a Rashba-type SOI. We found that the AH conduc-
tivity vanishes unless the lifetime is spin-dependent, indi-
cating a strong similarity between the intrinsic AH and SH
effects. Inclusion of a spin-dependent lifetime yields a
nonvanishing AH conductivity, the expression of which is
similar to that obtained for the sidejump mechanism. The
SH conductivity for the Rashba 2DEG with magnetic
scattering of electrons has been found to be finite even in
the diffusive transport regime. The SH conductivity in the
presence of both magnetic and nonmagnetic impurities
shows that the SH conductivity may be controlled by the
amount of magnetic impurities.
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