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We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in
driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance-
assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
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The accurate and quantitative modeling of open quan-
tum systems at high spectral densities remains a serious
challenge for quantum theory and computational physics.
Even the ab initio treatment of apparently simple, atomic
one or two electron systems under nonperturbative forcing,
in the energy range of laboratory experiments, has become
available only during the last two decades [1]. Further-
more, it appears a safe bet that the driven three body Cou-
lomb problem [2] will be the most complicated ‘‘many
particle’’ quantum problem still amenable to a (numeri-
cally) exact and complete solution, even on the most pow-
erful supercomputers. Thus, alternative theoretical strat-
egies which allow a precise treatment, without saturating
our computational resources nor losing quantitative pre-
dictive power, are in need.

Specifically in the range of high spectral densities, semi-
classical approaches—which try to deduce the spectral
structure of a given quantum system from the underlying
Hamiltonian dynamics—open such an avenue. However,
while semiclassics of bounded systems is well developed
[3], its generalization for open systems [4] has not been
fully accomplished yet: our semiclassical understanding of
tunneling and decay phenomena in systems with mixed
regular-chaotic classical phase space structure remains
rather incomplete, and semiclassics still has to prove its
potential to come up with robust (a priori) quantitative
predictions for specific experiments.

In the present Letter, we improve on that situation by
elaborating a fully quantitative semiclassical treatment of a
paradigmatic example of open system dynamics at high
spectral densities, in the context of light-matter interaction
and coherent control: nondispersive wave packets have
been shown to be ubiquitous in periodically driven quan-
tum systems with underlying mixed regular-chaotic phase
space [5–8]. They can be launched along essentially arbi-
trary phase space trajectories, which can be manipulated in
real time [9]. In contrast to ‘‘traditional’’ nondispersive
wave packets, which rely on the harmonicity of the spectra
they are built upon [10], these strongly localized eigen-
states of the driven system are robust against perturbations
[6,9,11], which is a consequence of the Kolmogorov-

Arnold-Moser theorem [3]. The characteristic property
which defines their unique potential for quantum control
purposes [including quantum memory applications [12],
i.e., within the framework of molecular quantum comput-
ing [13]] is their essentially eternal lifetime on experimen-
tally relevant time scales [7,14]. The lifetime is determined
by the decay rate of the wave packet from the elliptic island
to which it is anchored to in classical phase space (see
Fig. 1); i.e., it is essentially limited by a finite quantum
mechanical tunneling rate through classically impenetrable
phase space barriers [7,14,15].

However, while always very long, the precise value of
the wave packet’s lifetime is not a statistically robust
quantity—it fluctuates over several orders of magnitude
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FIG. 1. Classical phase space of driven hydrogen, generated by
the Hamiltonian (1), for !0 � 1 and F0 � 0:041, and spanned
by the action-angle variables of the unperturbed atom, at !t � 0.
Nondispersive quantum wave packets are localized at the center
of the principal elliptic island (concentric structure in the middle
of the plot) and move along the resonantly driven Kepler orbit
sketched in the inset (the arrow shows the direction of the driving
force at the outer turning point), in phase with the driving field.
For the chosen parameters, a prominent, higher order nonlinear
5:1 resonance strongly affects the tunneling coupling of the
principal island’s eigenstates to the surrounding chaotic sea.
This resonance is expressed by the fivefold structure right within
the outermost torus which confines the principal island.
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under tiny changes of the boundary conditions, which may
be stray fields or other uncontrolled imperfections in the
experiment. This sensitivity stems from the coupling of the
wave packet to the chaotic component of phase space, into
which it is completely embedded (see Fig. 1). We will
derive a quantitative semiclassical estimate for the mean
value and the variance of the wave packet’s decay rate,
without adjustable parameters.

For the sake of clarity, we consider a simplified [yet
reliable [7] ] formulation of the problem we have in mind:
atomic hydrogen initially prepared in a highly eccentric
(extremal parabolic) Rydberg state aligned along the field
polarization axis of a linearly polarized microwave driving
field of amplitude F and frequency ! can be described by
the Hamiltonian

 H�pz; z� �
p2
z

2
�

1

z
� Fz cos�!t�; (1)

where the configuration space of the electron has been
confined to the z axis [for the actual three-dimensional
problem, such confinement can be achieved by applying
a weak additional static electric field along the polarization
axis of the periodic drive [7] ]. The classical phase space
structure generated by this Hamiltonian is illustrated in
Fig. 1, and is completely fixed by the choice of the scaled
driving field frequency !0 � !n3

0 and amplitude F0 �
Fn4

0, respectively, as a consequence of the scale invariance
of Hamilton’s equations of motion. Specifically, we set
!0 � 1 and F0 � 0:041, in order to realize the essential
ingredients of our subsequent treatment: (i) an elliptic
island (at the center of Fig. 1), which is (ii) completely
embedded into the chaotic sea, and (iii) encloses a promi-
nent, higher order r:s nonlinear resonance right within its
outermost confining torus.

For different values of n0, and accordingly adjusted !
and F, we find [by exact numerical diagonalization of the
Floquet Hamiltonian defined by (1) [7] ] wave packet
eigenstates localized on the elliptic island, together with
their decay rates �wp. Under changes of n0, the latter
(which, in this specific physical realization, are nothing
but ionization rates mediated by multiphoton coupling to
the atomic continuum) fluctuate wildly, as shown in Fig. 2
below.

To determine the mean value and the variance of �wp, let
us start from the random-matrix ansatz for an effective
Hamiltonian employed in [15]:

 Heff �

Ewp Vrc 0 � � � 0
Vrc H11 � � � � � � H1N

0 ..
. ..

.

..

.
HN1 � � � � � � HNN �

i
2 �c

0
BBBBB@

1
CCCCCA: (2)

The matrix structure comprises the wave packet state
localized at the center of the regular island (with energy
Ewp), and N additional states located in the chaotic phase

space region, one of which being subject to decay with the
rate �c. The chaotic states are assumed to be strongly
coupled to each other, such that the corresponding sub-
block (Hij) can be described by a random matrix from the
Gaussian orthogonal ensemble [16]. In accordance with the
resonance-assisted coupling mechanism to be explained
below, we assume that the wave packet is dominantly
coupled to only one of those chaotic states, via the (com-
paratively small) matrix element Vrc. As a qualitative,
conceptional improvement over [15], where Vrc and �c
were free fitting parameters, we here derive quantitative
estimates for these two coupling constants.

Within our semiclassical framework, transport to the
continuum is only possible by traversing a large part of
chaotic phase space. Quantum mechanically, this is equiva-
lent to multiphoton transition amplitudes which couple the
initial state—the wave packet—to Rydberg states with
ionization potentials smaller than !, i.e., with principal
quantum numbers n above nc � n3=2

0 =
���������
2!0

p
. The final,

ionizing step occurs from these highly excited states by a
one-photon process. In the effective Hamiltonian of (2),
this final ionization process is accounted for by attributing
a finite decay rate �c to one of the chaotic states, which is
well estimated by the Golden Rule expression

 �c � 0:265F2!�10=3n�3
c ’ 1:26� 10�3n�5=2

0 a:u: (3)
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FIG. 2 (color online). Comparison of the exact quantum decay
rates of the wave packet states (symbols) with the semiclassical
prediction for their mean value ��wp [solid line, given by Eqs. (8)
and (9)] and the standard deviation [dashed lines, see Eq. (10)].
The rates are plotted as a function of the principal quantum
number n0 of the Rydberg orbit along which the wave packet is
launched. The quantum results were obtained for the same field
parameters as Fig. 1. Open circles and diamonds distinguish
different basis sizes form the numerical diagonalization. For
n0 � 150, the basis was chosen such as to resolve all bound
states with an ionization potential larger and equal to the one-
photon energy !. For n0 > 150, only bound states below 2n0

were numerically resolved.
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for the single-photon ionization rate of a Rydberg state
with quantum number nc [17].

A random-matrix average over the eigenvalues and ei-
genvectors of the chaos block (Hij) gives rise to the
Cauchy-type probability density

 P��wp� �
1

�

����������������
�0=�wp

q
�wp � �0

(4)

of the wave packet’s decay rate [15]. The characteristic
scale �0 is derived as �0 � ��Vrc=!�2�c, exploiting that
the chaotic eigenvalues are uniformly distributed within an
energy interval of width !, due to the inherent periodicity
of the Floquet spectrum. Because of the large fluctuations
implied by the distribution (4), the relevant statistical
quantity is given by the averaged logarithm [18]. An ex-
plicit calculation of this geometric mean gives

 

�� wp 	 expfhln��wp�ig � �0 �

�
�Vrc

!

�
2
�c; (5)

which depends only on the single-photon ionization rate �c
from (3), on the driving frequency !, and on the coupling
matrix element Vrc between the regular island and its
chaotic surrounding. Vrc can be derived using purely semi-
classical arguments, as follows.

Let us recall that nonlinear resonances between the
external drive and the local modes of a regular phase space
region induce higher order perturbative couplings between
the locally quantized eigenstates of that region [19]. This
leads to the phenomenon of resonance-assisted tunneling
which, originally proposed for near-integrable dynamics,
can be generalized to mixed regular-chaotic systems as
well [20]. There it provides the dominant semiclassical
mechanism for the tunneling process that connects the
‘‘ground state’’ of a regular island (localized at the island’s
center) to states within the chaotic sea [which, in turn, are
coupled to the atomic continuum with a rate �c, given in
Eq. (3)].

Quantitatively, the classical dynamics near a r:s reso-
nance (s oscillations match r driving periods) is described
by the effective pendulum Hamiltonian [19]

 Hres �
�~I � Ir:s�2

2mr:s
� 2Vr:s cos�r~��; (6)

expressed in terms of the local action-angle variables ~I, ~�
of the principal elliptic island, where s is absorbed in the
definition of ~�. The central action Ir:s of the r:s resonance,
and the effective mass and coupling parameters mr:s, Vr:s,
can be extracted with little numerical effort from the
classical phase space, by computing the area covered by
the separatrices of the r:s resonance, and by evaluating the
stability matrix of the associated periodic points [20].
Quantizing (6), we see that the perturbation term induced
by the r:s resonance couples the kth excited state of the
principal island, given by the plane wave h~�jki 
 exp�ik~��

in angle space, to the states jk� ri, with a strength Vr:s.
Since the wave packet state corresponds to the principal
island’s ground state with k � 0, its coupling to the chaotic
sea is thus given by the effective matrix element

 Vrc � Vr:s
Ylc�1

l�1

Vr:s
~E0 � ~El�r

; (7)

with ~Ek � �~Ik � Ir:s�
2=�2mr:s� and ~Ik � @�k� 1=2�. Here,

jlc � ri denotes the first state within this perturbative se-
quence of higher order couplings that is located outside the
principal island, and the prefactor Vr:s accounts for the
final step from j�lc � 1� � ri to jlc � ri.

In our exemplary case of Fig. 1, the driving induces a
prominent 5:1 resonance within the principal regular island
on which the wave packet is localized. From the area
covered by the principal island—which is determined
numerically—we deduce n0 ’ 135 as the critical quantum
number at which the island’s fifth excited state (i.e., the
first state to which the ground state is coupled by the 5:1
resonance) is located exactly on the outermost invariant
torus. For n0 < 135, we can therefore identify this fifth
excited state with the first basis state of the chaos block in
the Hamiltonian (2), and set Vrc � Vr:s, which, together
with Eqs. (3) and (5) and the numerically computed value
of Vr:s, leads to our central result

 

�� wp ’ 9:6� 10�13n�1=2
0 a:u:; n0 < 135; (8)

for the mean decay rate of the wave packet. At larger
principal quantum numbers (n0 > 135), the coupling
from the regular island to the chaotic sea involves one
more perturbative step in Eq. (7), which substantially
reduces the matrix element Vrc. This leads to

 

�� wp ’ 1:7� 10�20 n7=2
0

�n0 � 131�2
a:u:; n0 > 135: (9)

As a consequence, the semiclassically calculated decay
rates exhibit a sudden drop at n0 ’ 135. (9) describes the
monotonic decrease (mind the expression’s denominator)
of the rates with n0 up to n0 ’ 250, where an additional
drop is expected to occur by virtue of yet another pertur-
bative step in Eq. (7).

Figure 2 highlights that our semiclassical result ��wp fits
the exact quantum decay rates �wp of the wave packet very
well. On average, after a first exponential decrease for
n0 � 60, the decay rate settles to a plateau at �� ’
10�13 a:u:, and eventually drops again around n0 � 135.
Beyond that, our model also succeeds to very well charac-
terize the quantum rates’ fluctuations by their logarithmic
standard deviation derived from (4):

 

�������������������������
varln��wp��

q
�

����������������������������������������������
hln��wp� � ln� ��wp��

2i
q

� �: (10)

This universal result is indicated by the dashed lines in
Fig. 2, which are given by ��wpe�� and which encompass
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the overwhelming part of the data. Despite the sensitive
dependence of individual decay rates on boundary condi-
tions and classical phase space structures, our combined
semiclassical and random-matrix approach provides a ro-
bust statistical characterization, over a wide range of exci-
tation energies.

The disagreement between our semiclassical result and
the quantum data below n0 ’ 60 is not surprising, since, at
such low excitations, the principal island cannot accom-
modate a sufficient number of quantum eigenstates to
resolve the 5:1 resonance [approximately r=2 states are
needed for satisfactory resolution [20] ]. Thus, a necessary
condition [item (iii) above] for the resonance-assisted tun-
neling mechanism to manifest itself is not satisfied at too
small n0 & 60.

In conclusion, the plateaulike structure born out in
Fig. 2, in the range n0 ’ 60–135, corroborates the rele-
vance of the resonance-assisted tunneling mechanism for
the decay properties of nondispersive wave packets, in an
experimentally routinely accessible energy range [5,9].
Note that the average trend �wp 
 n

�1=2
0 , predicted by (8)

and confirmed in Fig. 2, is markedly different from an on
average exponential decay with n0, as assumed in [15,21].
Indeed, a similar step structure arises in earlier published
data on nondispersive hydrogen wave packets [21] (at a
slightly different field amplitude), which, on the basis of
our presently improved understanding, is also attributed to
resonance-assisted tunneling. Thus, while the precise ex-
tension of the plateau depends on the specific choice of
parameter values, and certainly also on the effective di-
mensionality of the electron’s configuration space, the
structure as such is a robust fingerprint of resonance-
assisted tunneling, as well as the universal value � of the
decay rates’ standard deviation. An experimental verifica-
tion of this prediction is challenging, though appears in
reach for the most advanced experimental setups to date
[5,9].
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