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We present in analytic form the matching conditions for the strong-coupling constant �
�nf�
s ��� at the

flavor thresholds to four loops in the modified minimal-subtraction scheme. Taking into account the
present knowledge on the coefficient �4 of the Callan-Symanzik beta function of quantum chromody-
namics, we thus derive a five-loop formula for �

�nf�
s ��� together with appropriate relationships between

the asymptotic scale parameters ��nf� for different numbers of flavors nf.
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The strong-coupling constant �
�nf�
s ��� � g2

s=�4��,
where gs is the gauge coupling of quantum chromodynam-
ics (QCD), is a fundamental parameter of the standard
model of elementary particle physics; its value ��5�s �MZ�
is listed among the constants of nature in the Review of
Particle Physics [1]. Here, � is the renormalization scale,
and nf is the number of active quark flavors q, with mass

mq � �. The � dependence of �
�nf�
s ��� is controlled by

the Callan-Symanzik beta function of QCD,
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The calculation of the one-loop coefficient �
�nf�
0 about 33

years ago [2] has led to the discovery of asymptotic free-
dom and to the establishment of QCD as the theory of
strong interactions, an achievement that was awarded by
the 2004 Nobel Prize in Physics. In the class of schemes
where the beta function is mass independent, which in-
cludes the minimal-subtraction (MS) schemes of dimen-

sional regularization [3], �
�nf�
0 and �

�nf�
1 [4] are universal.

The results for �
�nf�
2 [5] and �

�nf�
3 [6] are available in the

modified MS (MS) scheme [7]. As for �
�nf�
4 , the term

proportional to n4
f,

 �
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�
1205

2 985 984
�
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10 368
��3�

�
n4
f �O�n

3
f�; (2)

where � is Riemann’s zeta function, was found in the
large-nf expansion [8], while the residual terms of O�n3

f�

and below are presently unknown. However, the latter were
estimated by an educated guess, through weighted asymp-
totic Padé approximant predictions (WAPAPs), which are
improved by including asymptotic corrections with respect
to the usual Padé approximants and performing a weighted

average over negative values of nf [9]. In the case of �
�nf�
3 ,

leaving aside the quartic Casimir terms, which appear there

for the first time, the WAPAPs approximate the exact
coefficients of nnf with n � 0; 1; 2 amazingly well, at the

1% level. One may thus expect that the WAPAPs for �
�nf�
4

work similarly well, except for the quartic Casimir terms,
which cannot be predicted quite as reliably. For the read-

er’s convenience, �
�nf�
N �N � 0; . . . ; 4� are listed for the nf

values of practical interest in Table I.
In MS-like renormalization schemes, the Appelquist-

Carazzone decoupling theorem [10] does not in general
apply to quantities that do not represent physical observ-
ables, such as beta functions or coupling constants; i.e.,
quarks with mass mq � � do not automatically decouple.
The standard procedure to circumvent this problem is to
render decoupling explicit by using the language of effec-
tive field theory. As an idealized situation, consider QCD
with nl � nf � 1 massless quark flavors and one heavy
flavor h, with mass mh � �. Then, one constructs an
effective nl-flavor theory by requiring consistency with
the full nf-flavor theory at the heavy-quark threshold �� �
O�mh�. This leads to a nontrivial matching condition be-
tween the couplings of the two theories. Although,

��nl�s �mh� � �
�nf�
s �mh� at leading and next-to-leading or-

ders, this relationship does not generally hold at higher

orders in the MS scheme; i.e., �
�nf�
s ��� starts to exhibit

finite discontinuities at the flavor thresholds. If the �

evolution of �
�nf�
s ��� is to be performed at N � 1 loops,

i.e., with the highest coefficient in Eq. (1) being �
�nf�
N , then

consistency requires that the matching conditions be im-

TABLE I. MS values of �
�nf�
N for variable nf. �

�nf�
4 is estimated

by WAPAPs with quartic Casimir terms omitted [9].

nf �
�nf�
0 �

�nf�
1 �

�nf�
2 �

�nf�
3 �

�nf�
4

3 9
4 4 3863

384
445
32 ��3� �

140 599
4608 162

4 25
12

77
24

21 943
3456

78 535
5184 ��3� �

4 918 247
373 248 119

5 23
12

29
12

9769
3456

11 027
648 ��3� � 598 391

373 248 107

6 7
4

13
8 � 65

128
11 237

576 ��3� � 63 559
4608 124
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plemented in terms of N-loop formulas. Then, the residual
� dependence of physical observables will be of orderN �
2. The QCD matching conditions at the flavor thresholds to
two [11] and three [12] loops are known in analytical form;
they are routinely used in the literature and even copied to
the Review of Particle Physics [1]. Recently, the four-loop
result was found, in semianalytical form [13]. In fact, the
most intricate four-loop tadpole master integrals involving
one nonvanishing mass among the basic set that enters any
such calculation could so far only be computed numeri-
cally, with limited precision [13,14]. It is the purpose of
this Letter to overcome this bottleneck by presenting the

four-loop matching condition for �
�nf�
s ��� entirely in terms

of standard transcendental numbers. This requires the ana-
lytic evaluation of the massive four-loop tadpole diagram
that is called X0 or T91 in the recent literature [13].
Together with the results of Ref. [15], we thus enhance
the knowledge of the basic set of massive four-loop tadpole
master integrals in analytic form.

Prior to explaining the core of this analysis and present-
ing our analytic result for the four-loop matching condition

for �
�nf�
s ���, we derive the five-loop formula for this

coupling for fixed value of nf. In order to simplify the

notation, we introduce the couplant a�nf���� � �
�nf�
s ���=�

and omit the labels � and nf wherever confusion is im-
possible. Integrating Eq. (1) leads to
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where bN � �N=�0 (N � 1; . . . ; 4), � is the so-called asymptotic scale parameter, and C is an arbitrary constant. The
second equality in Eq. (3) is obtained by expanding the integrand. The conventional MS definition of �, which we adopt,
corresponds to choosing C � �b1=�0� ln�0 [7,16]. Iteratively solving Eq. (3) yields, with L � ln��2=�2�,
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The particular choice of C [7,16] in Eq. (3) is predicated on the grounds that it suppresses the appearance of a term
proportional to �const=L2� in Eq. (4).

We now turn to the analytic evaluation of the four-loop matching condition for �
�nf�
s ��� at the flavor thresholds. The

underlying formalism was comprehensively explained in Refs. [11,12], and most of the technical issues related to its
application at four loops were already discussed in Ref. [13]. For lack of space, we thus concentrate here on the missing
link of this analysis beyond the scope of Ref. [13], namely, the analytic evaluation of the massive four-loop tadpole
diagram X0, which is depicted in Fig. 1(a). This task may be simplified by noticing that X0 does not represent a master
integral, but may be reduced to simpler integrals with less lines, all of which are analytically known [14], some for a short
time only [15], except for the one (J0) shown in Fig. 1(b). The integral J0 is finite, and the coefficients of its expansion in �,
where D � 4� 2� is the dimensionality of space-time, have only one level of transcendentality [17]; i.e., they contain
polylogarithms Lik and zeta functions ��k� with the same value of k. These properties reduce the number of terms and thus
simplify the calculation. In order to evaluate J0, we temporarily introduce an artificial mass splitting among the four
massive lines in Fig. 1(b), by assigning the massm to any two of them and the massM to the other two. We then perform an
expansion in the ratio x � m2=M2 using the large-mass expansion technique and recover the complete series in x as
explained in Ref. [17]. Through O��2�, we have

 �1� ���m2M2�2�m2J0 �
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where we introduced the shorthand notation ~Sa � 2a�2Sa�2n� 1� � Sa�n� 1�, with S
a�n� �
Pn
j�1�
1�jj�a being

harmonic sums, and omitted irrelevant terms involving lnx. We then put x � 1 and exploit the identities
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at transcendentality levels k � a� c and k � a� b� c,

respectively. The sums with k < 5 may be found in
Ref. [17], while those with k � 5 may be obtained from
there through integration,
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where f�l� � S
a�l�; . . . . After some algebra, we find an
analytic expression for J0 and hence also for X0,
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2
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Here and in the following we use the constants
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If we measure the matching scale �� in units of the MS
massmh� ���, our result for the ratio of a0 � a�nl�� ��� to a �
a�nf�� ��� reads
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where ‘ � ln� ��2=m2
h� ���	 and
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The counterpart of Eq. (10) in the on-shell scheme of mass
renormalization is obtained by substituting the three-loop
relationship between mh��� and the pole mass Mh [18].

Going to higher orders, one expects, on general grounds,
that the relationship between ��nl�s ��0� and �

�nf�
s ���, where

�0 � ��� �, becomes insensitive to the choice of �� as
long as �� � O�mh�. This has been checked in Ref. [12] for
four-loop evolution in connection with three-loop match-
ing. Armed with our new results, we are in a position to
explore the situation at the next order. As an example, we
study how the �� dependence of the relationship between
��4�s �M�� and ��5�s �MZ� is reduced as we implement five-
loop evolution with four-loop matching. We first calculate
��4�s � ��� with Eq. (4) by imposing the condition ��4�s �M�� �

0:34 [1], then obtain ��5�s � ��� from the on-shell version of
Eq. (10) with Mb � 4:85 GeV [1], and finally compute
��5�s �MZ� with Eq. (4). In Fig. 2, the variation of ��5�s �MZ�
with ��=Mb is displayed for the various levels of accuracy,

ranging from one-loop to five-loop evolution. While the

FIG. 1. Four-loop tadpole diagrams (a) X0 and (b) J0. Dashed
and solid lines represent massless and massive propagators,
respectively; a dot on a line duplicates that propagator.
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FIG. 2. �� dependence of ��5�s �MZ� from N-loop evolution and
(N � 1)-loop matching, with N � 1 (dotted line), 2 (short-
dashed line), 3 (dot-dashed line), 4 (long-dashed line), and 5
(solid line).
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leading-order result exhibits a strong logarithmic behavior,
the analysis is gradually getting more stable as we go to
higher orders. The five-loop curve is almost flat. Besides
the �� dependence of ��5�s �MZ�, also its absolute normal-
ization is significantly affected by the higher orders.

As we have learned from Fig. 2, in higher orders,
the actual value of �� does not matter as long as it is

comparable to the heavy-quark mass. In the context of
Eq. (10), the choice �� � �h, where �h � mh��h� is the
renormalization-group (RG) invariant MS mass, is par-
ticularly convenient, since it eliminates the RG logarithm
‘. With this convention, we obtain from Eqs. (3), (4), and
(10) a simple relationship between �0 � ��nl� and � �
��nf�,
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(12)

where l � ln��2
h=�2�. The O�1=l3� term of Eq. (12) is

new. Equation (12) represents a closed four-loop formula
for ��nl� in terms of ��nf� and�h. For consistency, it should
be used in connection with the five-loop expression (4) for
�
�nf�
s ��� with the understanding that the underlying flavor

thresholds are fixed at �� � �h. The inverse relation that
gives ��nf� as a function of ��nl� and �h emerges from
Eq. (12) via the substitutions �$ �0; �N $ �0N for N �
0; . . . ; 4; and cN ! �cN for N � 2; 3; 4.

In conclusion, we extended the standard description of
the strong-coupling constant in the MS renormalization
scheme to include five-loop evolution and four-loop
matching at the flavor thresholds. These results are in-
dispensable to relate the QCD predictions for different
observables at next-to-next-to-next-to-next-to-leading
order.
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