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We perform ab initio calculations of the frequency shift induced by a static electric field on the cesium
clock hyperfine transition. The calculations are used to find the frequency shifts due to blackbody
radiation. Our result [��=E2 � �2:26�2� � 10�10 Hz=�V=m�2] is in good agreement with early mea-
surements and ab initio calculations performed in other groups. We present arguments against recent
claims that the actual value of the effect might be smaller. The difference (�10%) between ab initio and
semiempirical calculations is due to the contribution of the continuum spectrum in the sum over
intermediate states.
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Atomic clocks are now important for both practical
applications and fundamental physics. One of the domi-
nant uncertainties in high-precision measurements of fre-
quencies in atomic clocks is the ac Stark shift induced by
blackbody radiation (see e.g. [1]). There is some disagree-
ment on the value of this shift for cesium. Early measure-
ments [2–4] and ab initio calculations [5,6] support a value
which is close to �2:2� 10�10 Hz=�V=m�2, while more
recent measurements [7,8] and semiempirical calculations
[9–11] claim that the actual number might be about 10%
smaller.

In the present work, we have performed fully ab initio
calculations of the radiation frequency shift and have
identified the source of the disagreement between different
theoretical results as the contribution of the continuum
spectrum states into the summation over the complete set
of intermediate states. The continuum spectrum was in-
cluded in all the ab initio calculations and missed in the
semiempirical considerations. We demonstrate that adding
the contribution of the continuum spectrum to where it was
missed brings all theoretical results to good agreement
with each other and with early measurements. We have
performed calculaitons of the radiation frequency shift for
other atoms and ions in Ref. [12].

Blackbody radiation creates a temperature-dependent
electric field, described by the Planck radiation law

 E2�!� �
8�
�

!3d!
exp�!=kT� � 1

: (1)

This leads to the following expression for the average
electric field radiated by a blackbody at temperature T:

 hE2i � �831:9 V=m�2�T�K�=300�4: (2)

This electric field causes a temperature-dependent fre-
quency shift of the atomic microwave clock transitions. It
can be presented in the form (see, e.g. [1])

 ��=�0 � ��T=T0�
4�1	 ��T=T0�

2�: (3)

Here T0 is usually assumed to be room temperature (T0 �

300 K). The frequency shift in a static electric field is

 �� � kE2: (4)

Coefficients k and � are related by
 

� �
k
�0
�831:9 V=m�2

� k� 7:529� 10�5 �V=m�2 Hz�1 �for Cs�; (5)

while � is a small correction due to frequency distribution
(1). In the present work, we calculate the coefficient k.

In the case when there is no other external electric field,
the radiation shift can be expressed in terms of the scalar
hyperfine polarizability of the atom. This corresponds to
averaging over all possible directions of the electric field.
The hyperfine polarizability is the difference in the atomic
polarizabilities between different hyperfine structure states
of the atom. The lowest-order effect is linear in the hyper-
fine interaction and quadratic in the electric field. The
corresponding third-order perturbation theory expressions,
after angular reduction, have the form

 ��1�as� � e2hE2i
2I 	 1

6

�
X
n;m;j

Aas;nshnsjjrjjmpjihmpjjjrjjasi

��as � �ns���as � �mpj�
; (6)
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e2hE2i
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X
j

�CI	1=2 � CI�1=2�

�
X
n;m

hasjjrjjnpjiAnpj;mpjhmpjjjrjjasi
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and
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Here
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Ans is the hfs constant of the ns state, Am;n is the off-
diagonal hfs matrix element, I is nuclear spin, F � I	 J,
J is the total electron momentum of the atom in the ground
state (J � 1=2), and j is the total momentum of virtual p
states (j � 1=2, 3=2). Summation goes over a complete set
of ns, mp1=2, and mp3=2 states.

In order to calculate the frequency shift to the hfs
transitions due to the electric field, one needs to have a
complete set of states and to have the energies, electric
dipole transition amplitudes, and hyperfine structure ma-
trix elements corresponding to these states. It is possible to
consider summation over the physical states and to then
use experimental data to perform the calculations. The
lowest valence states for which experimental data are
usually available dominate in the summation. Off-diagonal
hfs matrix elements can be obtained to a high accuracy as
the square root of the product of corresponding hfs con-
stants: Am;n �

������������
AmAn
p

(see, e.g. [13]). However, the accu-
racy of this approach is limited by the need to include the
tail contribution from highly excited states including states
in the continuum. This contribution can be very significant,
and its calculation is not easier than the calculation of the
whole sum.

Therefore, in the present work, we use an ab initio
approach in which high accuracy is achieved by the in-
clusion of all important many-body and relativistic effects.
We make only one exception toward the semiempirical
approach. The frequency shift is dominated by the term
(8) which is proportional to the hfs in the ground state. It is
natural to use an experimental hfs constant in the domi-
nating term to have more accurate results. Note, however,
that the difference with complete ab initio calculations is
small.

Calculations start from the relativistic Hartree-Fock
(RHF) method in the VN�1 approximation. This means
that the initial RHF procedure is done for a closed-shell
atomic core with the valence electron removed. After that,
states of the external electron are calculated in the field of
the frozen core. Correlations are included by means of the
correlation potential method [14]. We use two different
approximations for the correlation potential �̂. First, we
calculate it in the lowest, second-order of the many-body
perturbation theory (MBPT). We use the notation �̂�2� for
the corresponding correlation potential. Then we also in-
clude into �̂ two classes of the higher-order terms: screen-
ing of the Coulomb interaction and hole-particle
interaction (see, e.g. [15] for details). These two effects
are included in all orders of the MBPT, and the correspond-
ing correlation potential is named �̂�1�.

To calculate �̂�2�, we need a complete set of single-
electron orbitals. We use the B-spline technique [16,17]
to construct the basis. The orbitals are built as linear

combinations of 50 B splines in a cavity of radius 40aB.
The coefficients are chosen from the condition that the
orbitals are eigenstates of the RHF Hamiltonian Ĥ0 of
the closed-shell core. The �̂�1� operator is calculated
with the technique which combines solving equations for
the Green functions (for the direct diagram) with the
summation over a complete set of states (exchange dia-
gram) [15].

The correlation potential �̂ is then used to build a new
set of single-electron states, the so-called Brueckner orbi-
tals. This set is to be used in the summation in Eqs. (6)–(8).
Here again we use the B-spline technique to build the basis.
The procedure is very similar to the construction of the
RHF B-spline basis. The only difference is that new orbi-
tals are now the eigenstates of the Ĥ0 	 �̂ Hamiltonian,
where �̂ is either �̂�2� or �̂�1�.

Brueckner orbitals which correspond to the lowest va-
lence states are good approximations to the real physical
states. Their quality can be checked by comparing experi-
mental and theoretical energies. Moreover, their quality
can be further improved by rescaling the correlation po-
tential �̂ to fit experimental energies exactly. We do this by
replacing the Ĥ0 	 �̂ with the Ĥ0 	 ��̂ Hamiltonian in
which the rescaling parameter � is chosen for each partial
wave to fit the energy of the first valence state. The values
of � are �s � 0:8 and �p � 0:85 for �̂�2� and �s � 0:99

and �p � 0:95 for �̂�1�. Note that the values are very close
to unity. This means that even without rescaling the accu-
racy is very good and only a small adjustment to the value
of �̂ is needed. Note also that, since the rescaling proce-
dure affects both energies and wave functions, it usually
leads to improved values of the matrix elements of external
fields. In fact, this is a semiempirical method to include
omitted higher-order correlation corrections.

Matrix elements of the hfs and electric dipole operators
are found by means of the time-dependent Hartree-Fock
(TDHF) method [14,18]. This method is equivalent to the
well-known random-phase approximation. In the TDHF
method, single-electron wave functions are presented in
the form  �  0 	 � , where  0 is an unperturbed wave
function. It is an eigenstate of the RHF Hamiltonian Ĥ0:
�Ĥ0 � �0� 0 � 0. � is the correction due to external
field. It can be found be solving the TDHF equation

 �Ĥ0 � �0�� � ��� 0 � F̂ 0 � �V̂
N�1 0; (9)

where �� is the correction to the energy due to external
field (�� 
 0 for the electric dipole operator), F̂ is the
operator of the external field (Ĥhfs or eE � r), and �V̂N�1 is
the correction to the self-consistent potential of the core
due to external field. The TDHF equations are solved self-

PRL 97, 040802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
28 JULY 2006

040802-2



consistently for all states in the core. Then matrix elements
between any (core or valence) states n and m are given by

 h njF̂	 �V̂
N�1j mi: (10)

The best results are achieved when  n and  m are
Brueckner orbitals calculated with rescaled correlation
potential �̂.

We use Eq. (10) for all hfs and electric dipole matrix
elements in (6)–(8), except for the ground state hfs matrix
element in (8), where we use experimental data.

To check the accuracy of the calculations, we perform
calculations of the hfs in the ground state and of the static
scalar polarizability. Polarizability is given by the expres-
sion

 �0�a� �
2

3

X
m

jhajjrjjmij2

�a � �m
; (11)

which is very similar to the term (8) for the frequency shift.
The most important difference is that the energy denomi-
nator is squared in term (8) but not in (11). This means
better convergence with respect to the summation over
complete set of states for term (8) than for (11).
Therefore, if good accuracy is achieved for polarizabilities,
even better accuracy should be expected for the term (8)
(see also Ref. [10]).

However, the behavior of the other two terms, (6) and
(7), is very different and calculation of polarizabilities tells
us little about accuracy for these terms. Therefore, we also
perform detailed calculations of the hfs constants of the
ground state. The inclusion of core polarization [second
term in (10)] involves summation over the complete set of
states similar to what is needed for term (6). Comparing
experimental and theoretical hfs is a good test for the
accuracy for this term.

In addition to term (10), we also include two smaller
contributions to the hfs: structure radiation and the correc-
tion due to the change of the normalization of the wave
function. Our final result for the hfs constant is 2278 MHz,
which is in excellent agreement with the experimental
value 2298 MHz [19]. The result for static polarizability
is �0 � 399:0a3

0, which is also in a very good agreement
with the experimental value 401:0�6�a3

0 [20].
Table I presents the contributions of terms (6)–(8) to the

total frequency shift of the hfs transition for the ground
state of 133Cs calculated in different approximations.
Term (8) dominates, while term (7) is small but still
important. Results obtained with �̂�2� and �̂�1� differ sig-
nificantly (14%). However, after rescaling the results for
both �̂�2� and �̂�1� come within a fraction of a percent of
each other. Naturally, rescaling has a larger effect on
results obtained with �̂�2�. This means that the rescaling
really imitates the effect of higher-order correlations and
should lead to more accurate results.

In summary, we have three ways of estimation of the
accuracy of calculations: (a) calculation of static polar-
izability (0.5% accuracy); (b) calculation of the hfs (0.9%
accuracy); and (c) comparision of the results obtained in
the different most accurate approximations (last three lines
in Table I), which differ by about 0.3%. Therefore, we can
say that the accuracy of the calculations is not worse that
1%. Our final result is

 k � �2:26�2� � 10�10 Hz=�V=m�2: (12)

This corresponds to � � �1:70�2� � 10�14. To obtain a
frequency shift at finite temperature, one needs to substi-
tute this value into Eq. (3). For accurate results, one also
needs to know the value of �. It was estimated in Ref. [1] in
single-resonance approximation and found to be 0.014. In
many-resonance calculation, � � 0:013 [12].

We present our final result for the frequency shift to-
gether with other theoretical and experimental results in
Table II. Our value is in good agreement with early mea-
surements [2–4] and ab initio calculations [5,6], while
recent measurements [7,8] and semiempirical calculations
[9–11] give the value which is about 10% smaller. The less
accurate measurements of Bauch and Schröder [21] cover
both cases. We cannot comment on the disagreement be-
tween experimental results. However, the source of dis-
agreement between theoretical results seems to be clear. It
comes from the contribution of the continuum spectrum to
the summation over the complete set of states in term (6).
This term has off-diagonal hfs matrix elements between the
ground state and excited states. Since the hfs interaction is

TABLE I. Contribution of terms (6)–(8) to the frequencies of
the hyperfine transition in the ground state of 133Cs [��0=E

2 �
10�10 Hz=�V=m�2] in different approximations.

�̂ (6) (7) (8) Total

�̂�2�a �0:9419 0.0210 �1:0722 �1:9931
��̂�2�b �1:0239 0.0229 �1:2688 �2:2697
�̂�1�c �1:0148 0.0232 �1:2706 �2:2622
��̂�1�b �1:0167 0.0230 �1:2695 �2:2632

a�̂�2� is the second-order correlation potential.
bRescaled �̂.
c�̂�1� is the all-order correlation potential.

TABLE II. Electrostatic frequency shifts for the hyperfine
transition of Cs [��0=E

2 � 10�10 Hz=�V=m�2]; comparison
with other calculations and measurements.

This work Other calculations Ref. Measurements Ref.

�2:26�2� �1:9�2� [9] �2:29�7� [2]
�2:2302 [5] �2:25�5� [3]
�2:28 [6] �2:17�26� [21]
�1:97�9� [10] �2:271�4� [4]
�2:06�1� [11] �1:89�12� [7]
�2:271�8� [22] �2:03�4� [8]
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localized over short distances (�a0=Z), it emphasizes the
contribution of states with high energies including states in
the continuum [since �p�x � @, a small area of localiza-
tion (�x) allows high momentum (p) and thus high en-
ergy]. In our calculations, the contribution of states above
7p in term (6) is�0:35� 10�1 Hz=�V=m�2, which is 15%
of the total answer.

In contrast, states above 7p contribute only about
0.05% of the total value of term (8). This is because the
summation goes over the matrix elements of the electric
dipole operator, which is large on large distances, and
thus suppresses the contribution of high-energy states. It
is not surprising, therefore, that a semiempirical consid-
eration, involving only discrete spectrum states, gives
very good results for the atomic polarizabilities (see, e.g.
[10]). However, let us stress once more that the calcula-
tion of polarizabilities checks only term (8) and tells us
very little about the accuracy of the other two terms, (6)
and (7).

The contribution of the states above 7p is even more
important for term (7). Their contribution is about 30% of
the total value of this term. However, the term itself is small
and its accurate treatment is less important.

In ab initio calculations by Lee et al. [5], the summa-
tion over a complete set of states is reduced to solving a
radial equation (equations of this type are often called
Sternheimer equations after one of the authors of this
work). This approach does include the contribution of the
continuum spectrum, and the result is in very good agree-
ment with ours (see Table II).

In other ab initio calculations by Pal’chikov et al. [6],
the summation is done via Green functions. This corre-
sponds to a summation over the complete set of states and
does include the continuum spectrum. Again, the result is
in very good agreement with other ab initio calculations
(Ref. [5] and the present work).

Recent calculations by Beloy et al. in the companion
Letter [22] applied a mixed approach, with extensive use of
experimental data for lower cesium states and ab initio
summation over higher states including continuum.
The result is in good agreement with fully ab initio
calculations.

In contrast, the analysis performed in Refs. [9–11] is
limited to a discrete spectrum. Adding �0:34�
10�1 Hz=�V=m�2 [which is the total tail contribution
from all three terms (6)–(8) found in our calculation] to
the results of Feitchner et al. [9] and Micalizio et al. [10]
brings them to excellent agreement with ab initio calcu-

lations. The same modification of the result by Ulzega
et al. [11] makes it a little bit too large but still closer to
other results than without the tail contribution.

We are grateful to S. Ulzega, W. Itano, and
A. Derevianko for useful comments and references.
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