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We investigate the implementation of binary projective measurements with linear optics. This problem
can be viewed as a single-shot discrimination of two orthogonal pure quantum states. We show that any
two orthogonal states can be perfectly discriminated using only linear optics, photon counting, coherent
ancillary states, and feedforward. The statement holds in the asymptotic limit of a large number of these
physical resources.
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Projection measurements play an essential role in pho-
tonic quantum-information protocols. In these applica-
tions, generally, a projection onto superposition states or
entangled states of optical fields is required. Physically, it
is a highly nontrivial problem how to implement such a
measurement.

One plausible approach is to use linear optics and clas-
sical feedforward associated with a partial measurement.
For example, a universal quantum computation scheme for
photonic-qubit states has been proposed, which utilizes
only linear optics, photon counting, and highly entangled
auxiliary states of n photons generated by probabilistic
gate operations [1]. In principle, it works with unit success
probability in the asymptotic limit of large n. It is, how-
ever, still a nontrivial question how to prepare entangled
ancillae even for modest n.

In this Letter, we discuss the linear optics implementa-
tion of a measurement which affects a projection onto two
orthogonal states fj�i; j�ig. This is equivalent to the prob-
lem of discriminating two orthogonal quantum signals
fj�i; j�ig unambiguously [2,3]. We show that, in the
asymptotic limit of a large number of partial measure-
ments, one can perfectly discriminate the two states with
linear optics, photon counting, and feedforward, but with-
out any nonclassical auxiliary states. Even in the worst
case, the average error probability of discrimination ap-
proaches zero with the scaling factor of N�1=3 where N is

the number of the partial measurements. Note that the
signal space is two dimensional, but j�i and j�i can be
any physical states defined in a larger space, e.g., qubit
states, continuous variable states, etc.

Before discussing a linear optics implementation, it is
worth mentioning a result concerning the distinguishability
of two orthogonal multipartite states via local operations
and classical communication. Walgate et al. [4] showed
that one can perfectly discriminate an arbitrary set of two
orthogonal pure states via a series of local projective
measurements. The measurement basis at each local site
is chosen such that every possible remaining state after the
measurement must be orthogonal to each other. This result
means that if one shows a physical scheme that can exactly
discriminate any two orthogonal single-mode states, its
sequential application can achieve an exact discrimination
of any two orthogonal multimode states. In the following,
therefore, we concentrate on a discrimination of two
single-mode states.

An arbitrary set of two orthogonal single-mode states is
described by

 j�i �
X1
m�0

cmjmi0; j�i �
X1
m�0

dmjmi0; (1)

where jmi is an m-photon number state and h�j�i �P
1
m�0 c

�
mdm � 0. Figure 1 is the schematic of the measure-

ment apparatus. The states are equally split into N modes
by N � 1 asymmetric beam splitters [5],

 B̂ N�1;0��N�1�B̂N�2;0��N�2� � � � B̂1;0��1�j0i
�N�1j�i0 � e�â

y
N�1â0 � � � e�â

y
1 â0eâ

y
0 â0 ln�1=

���
N
p
�j0i�N�1j�i0 � N̂BSj�i0; (2)

where B̂i;0��i� � exp	�i�â
y
i â0 � âiâ

y
0 �
 and tan�i �

1=
������������
N � i
p

. The input is symmetrically split to N modes
with the effective power reflectance of 1=N. Then, at each
output port, one makes some measurement by using linear
optics and photon counters, where the information about
the measurement outcome is fed forward to design the next
measurement. It should be noted that this is a generalized
version of the scheme so-called ‘‘Dolinar receiver’’ [6–8]

which was originally proposed as a physical model attain-
ing the minimum error discrimination of the binary coher-
ent signals fj�i; j � �ig.

We briefly sketch how two states are discriminated by
such a scheme in the limit of N ! 1 and then provide a
rigorous proof. Suppose one inserts j�i or j�i into the
first beam splitter. For sufficiently small 1=N, the reflec-
tance of multiphotons can be neglected. The states after
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beam splitting are approximated to be B̂1;0��1�j0i1j�i0�
j0i1j�0i0�N

�1=2j1i1j�1i0 and B̂1;0��1�j0i1j�i0�
j0i1j�0i0�N�1=2j1i1j�1i0, where h�0j�0i � h�1j�1i=N �
0, since a beam splitting operation is unitary. Then mode 1
is measured. The measurement here is required to maintain
the orthogonality of any conditional outputs of j�i and
j�i. The local measurement satisfying this condition is
described by a two-dimensional projective measurement,

 j�0i �N p0

�
j0i �

1

X�
�1�

������������������
1� jXj2

q
�j1i

�

�N p0fj0i � 	X=2�O�X3�
j1ig; (3)

 j�1i �N p1f	X
�=2�O�X3�
j0i � j1ig; (4)

where N p0 and N p1 are the normalization factors and

 X �
2�h�0j�1ih�1j�1i � h�0j�1ih�1j�1i�����

N
p
�jh�0j�1ij

2 � jh�1j�0ij
2�

: (5)

Here, we have assumed jh�0j�1ij
2 � jh�1j�0ij

2 � 0,
which implies X / 1=

����
N
p

, and thus we can take X
 1
in the limit of large N. The other case, i.e., jh�0j�1ij

2 �
jh�1j�0ij

2 � 0, will be discussed later. Under this assump-
tion, the projective measurement of Eqs. (3) and (4) can be
implemented by the displacement operation D̂��1=

����
N
p
�

and photon counting as shown in Fig. 1(b). Since both
the signal and displacement are sufficiently weak, the
corresponding measurement vectors are described by

 D̂ y
�
�1����
N
p

�
j0i � e�j�1j

2=2N
�
j0i �

�1����
N
p j1i

�
; (6)

 D̂ y
�
�1����
N
p

�
j1i � e�j�1j

2=2N
�
��1����
N
p j0i � j1i

�
; (7)

which can be same as Eqs. (3) and (4) by choosing appro-
priate �1.

The conditional states after the first measurement can be
rewritten again as j�0i �

P
1
m�0 c

0
mjmi and j�0i �P

1
m�0 d

0
mjmi. Since N̂BS splits a state symmetrically, one

can repeat the same procedure for the remaining state with
the second beam splitter, the displacement operation
D̂��2=

����
N
p
�, where �2 is conditioned on the previous mea-

surement outcome, and a photon counter. After repeating
the same procedure to modes 1 to N � 1 with appropriate
�i’s, the final states at mode 0 contain with dominating
weight at most one photon and are still orthogonal to each
other. As a consequence, applying the final (Nth) displace-
ment and photon counting, one can exactly discriminate
j�i and j�i.

We now provide a detailed analysis on the above sketch
for the case of finite resources (finite N). The effects of
multiphoton reflections at each beam splitter are rigorously
included, and an upper bound on the error rate is derived.
We here assume that the average photon numbers of the
input states j�i and j�i are finite and, moreover, that their
photon number distributions decrease exponentially as
cm � ~cme

�mx=2 with a real positive number x. The prior
probabilities can be set to be equal without loss of general-
ity. It is also assumed that the average powers of local
oscillators always satisfy j�ij2 � jC�i j

2 �O�1=N�, where
C�i is a complex constant independent of N.

After finishing a whole process of N measurement steps,
one has a sequence of detected photon numbers. Because
of the symmetry of the N beam splitting, the probability of
detecting k photons at the ith measurement averaged over
all possible patterns of the sequence is given by

 P�i�k � jihkjD̂i��i=
����
N
p
�N̂BSj�i0j

2

�
h��i jâ

yk
0 â

k
0j��ii

Nkk!
�O

�
1

Nk�1

�

� Cmax
k =Nk �O�1=Nk�1�; (8)

where j��ii � D̂�C�i�j�i, whose photon number distri-
bution decreases exponentially, and Cmax

k is the maximum
value of h��i jâ

yk
0 â

k
0j��ii=k! for all i and possible inputs

[9].
Let us now denote the patterns in which all the photon

counters detect zero or one photon by ‘‘success’’ patterns
and the others by ‘‘failure’’ patterns, since, in our scenario,
the discrimination is hung up when the latter one is ob-
tained. The probability of resulting the failure pattern Pfail

is bounded by

 Pfail � 	Cmax
2 =N2 �O�1=N3�
 � N

� Cmax
2 =N �O�1=N2�; (9)

which implies that Pfail approaches zero in the limit of
large N, at least with the order of 1=N.

Even if a successful pattern is obtained, one must accept
a finite discrimination error depending on N, since the
conditional states get slightly nonorthogonal after each
measurement step. To see this, we revisit the first beam
splitter B̂1;0��1�. Let us describe the states after beam
splitting such that the orthogonal and nonorthogonal parts

FIG. 1. (a) N splitter and (b) a measurement apparatus at each
step. A displacement operation D̂��i=

����
N
p
� is realized by com-

bining the signal with a coherent state local oscillator
j�i=

��������������
N sin�
p

i via a beam splitter with sufficiently small power
reflectance of sin2�.
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are separated as
 

B̂1;0��1�j0ij�i� j0ij�0i�N
�1=2j1ij�01i

�N�1j2ij�2i����

� j0ij�0i�N�1=2j1ij�1i�N�3=2j1ij�ri

�
X1
k�2

N�k=2jkij�ki: (10)

Note that one obtains the same expression for j�i by
replacing j�ni with j�ni. The first two terms exactly sat-
isfy the orthogonality h�0j�0i � h�1j�1i=N � 0 and the
last terms represent the multiphoton reflection terms.
Here, j�0i �

P
1
m�0 cm�1� 1=N�m=2jmi, N�1=2j�01i �P

1
m�1 cm�m=N�

1=2�1� 1=N��m�1�=2jm� 1i, N�1=2j�1i �P
1
m�1 cm	1� �1� 1=N�m
1=2jm� 1i, and N�3=2j�ri �

N�1=2�j�01i � j�1i� (j�ni’s are also obtained by replacing
cm with dm). The terms j�ri, j�ri and that for multiphoton
reflections, which have been neglected in the previous
discussion, cause the residual nonorthogonality. Note that
the leading terms of all vectors j�ki’s and j�ki’s are inde-
pendent of N. Denote the ith measurement operation as

 

ihkjD̂i��i=
����
N
p
�B̂i;0��i�j0iij�i

jihkjD̂i��i=
����
N
p
�B̂i;0��i�j0iij�ij

� Ê�i�k j�i: (11)

Then the conditional outputs after detecting zero and one
photons at the first measurement are given by

 Ê �1�0 j�i �N 0

�
j�0i �

��1
N
j�1i �

1

N2 j�
�1�
R0
i

�
; (12)

 Ê �1�1 j�i �N 1

�
�1j�0i � j�1i �

1

N
j��1�R1
i

�
; (13)

respectively, where N 0 and N 1 are the normalization
factors and the third terms come from the higher order
terms (higher than 1=N1=2) in ihkjD̂i��i=

����
N
p
� and

B̂i;0��i�j0iij�i. The same outputs are obtained for j�i by
replacing j�ni with j�ni. The first two terms in Eqs. (12)
and (13) can be exactly orthogonal to those of j�i by

choosing �1=
����
N
p
� �1�

������������������
1� jXj2

p
�=X�, where X is ob-

tained by substituting j�0i, j�1i, j�0i, and j�1i into Eq. (5).
Since X / 1=

����
N
p

, this choice of �1 always satisfies the
constraint on the average power of the local oscillator,
j�1j

2 � jC�1
j2 �O�1=N�. However, we have to care of

the fact that, in both events, the total conditional states
Ê�1�k j�i and Ê�1�k j�i (k � 0, 1) are no longer orthogonal
due to their third terms.

Now, suppose that the same strategy is applied to the
choice of �2 for the second measurement step. After the
second measurement, the states are mapped into the new
one with orthogonal and nonorthogonal terms, where the
latter has two parts, i.e., contributions from the first and
second measurements. Note that the leading order of pre-
factors of j��1�Rk iwith respect to 1=N does not change during
the measurement process, as also the leading factors of j�i

do not change in the mapping in Eqs. (12) and (13).
Eventually, after repeating N � 1 measurement steps in a
similar way, if every photon counter detected only zero or
one photons, one obtains the conditional output consisting
of the orthogonal term and N � 1 nonorthogonal terms
stemmed from each measurement as

 j��N�1�i � Ê�N�1� � � � Ê�1�j�i

� j��N�1�i �
1

N2

XI�N�1�

x�1

jH�ix�0 i �
1

N

XJ�N�1�

y�1

jH
�jy�
1 i;

(14)

where the first term is exactly orthogonal to that of
j��N�1�i, while jH�l�k i is the residual nonorthogonal term
coming from j��l�Rki. I

�N�1� and J�N�1� are the numbers of
the events of detecting zero and one photon, respectively,
and thus I�N�1� � J�N�1� � N � 1.

Let us denote the final Nth measurement by jDki �

D̂y��N=
����
N
p
�jki (k � 0; 1). Suppose that �N is designed

such that jD0i and jD1i are the same as the orthogonal
terms in j��N�1�i and j��N�1�i, respectively, up to the
order of 1=N1=2 (the higher order terms contribute to the
detection error). Then the error probability PD1

err �

jhD1j�
�N�1�ij2 is given by

 PD1
err �

��������
XI�N�
x�1

hD1jH
�ix�
0 i

N2 �
XJ�N�
y�1

hD1jH
�jy�
1 i

N

��������
2
; (15)

where I�N� � J�N� � N. The leading order of hD1jH
�j�
k i is

independent of N for every j and k.
One can estimate the order of J�N� by counting the total

amount of photons put into the system, where photons are
supplied by the input state and N displacement operations.
This configuration is mathematically converted into a sim-
pler one with only two inputs, D̂��0�j�i and the coherent
state j�auxi, by adding some linear optics as illustrated in
Fig. 2. Here, with the relation D̂A���D̂B���B̂AB��� �
B̂AB���D̂A�� cos�� � sin��D̂B�� sin�� � cos��, one
finds j�0j

2 � j
PN
i�1 �i=Nj

2 and j�auxj
2 �PN

i�1 j�ij
2=N � j�0j

2, where these are bounded as j�0j
2 �

C0 �O�1=N� and j�auxj
2 � Caux �O�1=N� due to the

constraint on j�ij2’s. C0 and Caux are constants indepen-
dent of N.

FIG. 2. The original scheme (a) can be transformed into (b)
where the total input photon number is the sum of those of two
input states.
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The probability of having n photons in total decreases
exponentially with respect to n as P�n� �

Pn
m�0 Psig�n�

m�Paux�m� � CPe�nx �O�1=N�, where the last equality is
derived from the fact that the photon number statistics of
two inputs, Psig�m� and Paux�m�, are exponential and
Poissonian. Therefore, one can bound J�N� by a constant
CJ with exponentially small exception as

 Prob 	J�N� � CJ �O�1=N� � N�


� 1� CP expf�	CJ �O�1=N� � N�
g

�O�1=N�

� 1� ~CPe�N� �O�1=N�; (16)

where � can be arbitrarily small for large N. Eventually,
substituting it and I�N� � N into Eq. (15), one obtains

 PD1
err �

��������
I�N�

N2 hD1jH0iav �
J�N�

N
hD1jH1iav

��������
2

� CE=N2 �O�1=N3� � �O�1=N� � �2; (17)

where hD1jHkiav �
P
ihD1jH

�i�
k i=L (L � I�N� and J�N� for

k � 0; 1, respectively), and CE is some constant indepen-
dent of N. In a similar manner, the same bound is derived
for PD0

err � jhD0j�
�N�1�ij2. Then, summing over all detec-

tion patterns for both success and failure events, the aver-
age error probability is bounded as

 Ptot
err �

X
s

P�#s�Psucc
err �#s� �

X
f

P�#f�=2

�

�
1�

Cmax
2

N

�
PD0

err � P
D1
err

2
�
Cmax

2

2N
�O

�
1

N2

�

� C=N �O�1=N2� �O�1=N��� �2; (18)

where #s and #f represent the measurement sequence
patterns for the success and failure events, respectively.
P�#� is the probability to observe the pattern # where P�#f�
is bounded by Eq. (9). In the first sum, Psucc

err �#s� is the
average error probability for the success events, while 1=2
in the second sum (the failure events) is the probability of
randomly guessing the states. C is some constant. As a
consequence, in the limit of N ! 1, one can discriminate
j�i and j�i with unit probability.

Finally, we discuss the case jh�0j�1ij
2 � jh�1j�0ij

2 � 0
in Eq. (5), in which the desirable local measurement cannot
be implemented by a displacement and photon counting.
Here, let us consider the projection measurement consist-
ing of slightly perturbed vectors j�0i �

�������������
1� �
p

j�i �����
�
p
j�i and j�1i �

�������������
1� �
p

j�i �
����
�
p
j�i with a perturba-

tion parameter �. One can design such a measurement by
the previous strategy with the total error probability of
Ptot

err � C=N1�2� � O�1=N2�3�� � O�1=N1�3�=2�� �
O�N���2, where � � �logN�. This device can discrimi-
nate the original states j�i and j�i with the average error

probability of

 

Pav
err � 1� �1� Ptot

err��jh�0j�ij
2 � jh�1j�ij

2�=2

� C1=N
� �O�1=N2�� � C2=N

1�2� �O�1=N2�3��

�O�1=N1�3�=2���O�N���2: (19)

In the asymptotic limit of large N, this is minimized with
� � 1=3, and then we obtain Pav

err � C=N1=3 �

O�1=N2=3� �O�1=N1=2���O�N1=3��2, which still con-
verges to zero.

In summary, we have proved that arbitrary two-
dimensional projection measurement can be implemented
by linear optics and feedfoward without using any non-
classical ancillary states. Since these linear optics tools are
mostly available with current technology, the concrete
linear optics circuit we showed can be directly applied
for various quantum information protocols that require
binary projection measurements. The remaining question
is whether one can apply the same approach to the problem
of more than three states discrimination.
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Note added.—Details on derivation of some equations in
this Letter can be found in [10].
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