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We study the decoherence of a quantum computer in an environment which is inherently correlated in
time and space. We first derive the nonunitary time evolution of the computer and environment in the
presence of a stabilizer error correction code, providing a general way to quantify decoherence for a
quantum computer. The general theory is then applied to the spin-boson model. Our results demonstrate
that effects of long-range correlations can be systematically reduced by small changes in the error
correction codes.
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Quantum computers bear the promise to solve certain
problems exponentially faster than their classical counter-
parts [1]. Although small computers have been success-
fully tested [2], the development of large computers has
been hindered by decoherence. The most promising
method to tame decoherence is quantum error correction
(QEC) [1–4]. In QEC, it is usually assumed that correla-
tions in the environment either are nonexistent or decay
exponentially in time and space. In contrast, recent work
argues that correlated environments can lead to quadrati-
cally worse error levels [5–8]. Though the assumption of
uncorrelated noise is often reasonable, it is not fulfilled in
several physical systems proposed for realizing quantum
computers, notably solid state systems using superconduc-
tors [9] or quantum dots [10]. Hence, it is far from clear
how much protection from decoherence QEC gives in
these important cases [5,7].

In this Letter, we consider the long time dynamics of a
quantum computer immersed in a correlated quantum en-
vironment and protected by QEC. First, we describe the
parameters which quantify the level of protection from
QEC and give explicit expressions for them. Second, we
calculate these quantities in a concrete example: the spin-
boson model [11]. This model is directly applicable to
solid state quantum computers [9,10] but formally outside
the scope of QEC [7].

Our work shows that some protection against long-range
correlations can be built into QEC codes. The new element
here is that the periodic measurements in the QEC method
separate the environmental modes into high and low fre-
quencies. This natural ‘‘new’’ scale can then be used to
engineer quantum codes to better cope with the long-range
correlations.

To follow the long time behavior of the computer, we
remove nonessential elements and assume: (1) quantum
gates are perfect and operate much more quickly than the
characteristic response of the environment. (2) States of the
computer can be prepared with no errors. (3) Thermal
fluctuations are suppressed. Finally, for clarity in the
spin-boson example, we consider Ohmic coupling between
the environment and the qubits. Extensions to sub-Ohmic
and super-Ohmic coupling are straightforward.

Decoherence, QEC, and correlations.—The wave func-
tions of the computer and the environment are unavoidably
entangled during their time evolution. When a measure-
ment is performed, this entanglement is translated into the
probability of an error with respect to the ideal state of the
computer. This general feature of open quantum systems is
known as decoherence. In order to reduce its effects, QEC
encodes the computer state in a subspace of a larger Hilbert
space, H , such that by measuring observables in H the
wave functions of the computer and the environment are
disentangled to some order in �, the probability of a single
error in a QEC cycle. The outcome of the measurement,
called the syndrome, discriminates among the possible
errors in the computer, allowing a correction to be made.

The difficulty with correlated environments is that � is
no longer time independent [5–8]: past errors or gates can
substantially change ��t�. Consider, for instance, that at
time t1 an error occurs in the computer. Later, at time t2,
this is realized and corrected. Although the error was
detected, its precise time is unknown; therefore, when
calculating the probability of a future error, all possible
events at t < t2 must be taken into account. If the environ-
mental correlations decay algebraically, there is no char-
acteristic scale at which to truncate this sum. Hence, it may
be hard to estimate ��t�. Sometimes it is sufficient to
evaluate upper bounds on the error [4]; however, these
estimates may be poor for certain models. For instance,
correlated noise was studied in [7], which derived an upper
bound on the error strength in the Ohmic spin-boson
model. This bound is linear in the bosonic ultraviolet cut-
off, �, which is the only scale in the model. One of our
main points is that the dynamics imposed by the QEC code
provides another scale, which can then be used to generate
better codes and/or bounds. We specifically discuss the
spin-boson case, but our results can be adapted to other
situations.

Time evolution of encoded qubits.—The environment
usually can be described by a Hamiltonian, H0. Although
other couplings between the computer and the environment
are possible, we focus on the case of local vectorial cou-
pling: V � �

2

P
x
~f�x� � ~��x�, where ~��x� are Pauli matri-
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ces for the qubits, � is the coupling strength, and ~f�x� is a
function of environment operators.

QEC is essentially perturbative in V. It is therefore
natural to define the interaction representation: V̂�t� �
e�i=@�H0tVe��i=@�H0t. In this representation, the time evolu-
tion of the system during a QEC cycle that starts at time
t � 0 and ends at time t � � is

 Û��; 0� � Tte
�i��=2�

P
x

R
�

0
dt ~f�x;t� ~��x�

(1)

where Tt is the time ordering operation. It is also simple to
describe gates that are faster than the environmental re-
sponse. If a gate R� is executed at time � < �, at the end of
the QEC cycle the evolution is given by Û��; ��R�Û��; 0�.

At time t � �, the measurement selects a set of terms
from the right-hand side of Eq. (1). Only this set is carried
to the next QEC cycle. For stabilizer codes [1], it is
straightforward to identify which operators must be kept.
First, because the measurements are performed on individ-
ual logical qubits, it is sufficient to analyze the n physical
qubits that define a logical one. All unitary operations in
the Hilbert space of these n qubits can be written using the
Pauli groupGn. The subgroupE ofGn of all possible errors
in the computer is called the error set. Intuitively, E is given
by the Pauli matrices appearing in each term of an expan-
sion of the right-hand side of Eq. (1). For instance, the ele-
ment g � �x�x1��z�x2� 2 E is given by the time-ordered
term �2

R
�
0 dt1

Rt1
0 dt2f

x�x1; t1�f
z�x2; t2��

x�x1��
z�x2�.

The next step is to decompose E according to the pos-
sible values of the syndrome. This is done by noticing that
the measurement will not distinguish elements inside the
logical Hilbert space. Thus, the logical Pauli Group �G1,
generated by the identity and the logical Pauli matrices,
fI; �X; �Y; �Zg, defines the subgroup E0 � �G1 \ E. The parti-
tion P of E given by all left cosets ofE0 in E sorts the errors
by their syndromes. Using this fact, the right-hand side
terms of Eq. (1) can be reordered as U��; 0� �P
mum��; 0� with respect to P. Finally, a QEC code defines

an appropriate recovery operation for each syndrome, R �
frmg. At the time of the measurement, t � �, only one fumg
is selected and the corresponding operation, rm 2 R, is
performed. The overall time evolution for a QEC cycle is
�m��; 0� � rm���um��; 0�; thus, interference between
terms with different syndromes is eliminated.

The analogous result for many logical qubits and a
sequence ofN QEC cycles follows directly from the above:

 �w � �wN �N�; �N � 1��� . . .�w1
��; 0� (2)

where w is the particular history of syndromes for all the
qubits and �wi is simply the product of evolutions for the
individual qubits. Each history comes with the associated
probability

 P ��w� � h’0jh 0j�
y
w�wj 0ij’0i; (3)

where ’0 and  0 are the initial states of, respectively, the
environment and the encoded qubits. Finally, QEC only

partially disentangles the environment and the qubits.
There is always some residual decoherence, which can
be found from the reduced density matrix

 �~r;~s��w� �
h’0j�h 0j�

y
wj ~sih~rj�wj 0i�j’0i

h’0jh 0j�
y
w�wj 0ij’0i

(4)

with ~r, ~s elements of the logical subspace.
Equations (2)–(4), our central formal result, can be used

to assess the protection offered by a QEC code. They show
that � is a natural scale in the field theory that describes the
system’s evolution. Although the consequences of this
imposed scale are model dependent, its existence can be
used to construct better QEC codes; to show this explicitly,
we now turn to an example.

Decoherence in the spin-boson model.—The spin-boson
model deals with generic two state systems coupled line-
arly with an infinite set of harmonic oscillators. In its
general form, the model includes a finite tunneling ampli-
tude and a bias between the two states. For qubits, these
two features model ‘‘imperfections’’ and so are not con-
sidered here; they are not fundamental to the understanding
of decoherence in a correlated environment [12]. As we
consider only ‘‘perfect’’ qubits, the computer experiences
errors only due to dephasing. Finally, we choose to con-
sider the case of linear coupling to an Ohmic bath. We
stress that these two choices do not restrict our results, but
allow for a convenient notation.

The Hamiltonian of the model can be written as

 H �
vb
2

Z 1
�1

dx�@x��x��2 � ���x��2

�

����
�
2

r
�
X
n

@x��n��zn; (5)

where � and � � @x	 are canonical conjugate variables,
�zn act in the Hilbert space of the qubits, vb is the velocity
of the bosonic excitations, and @ � kB � 1. The bosonic
modes have an ultraviolet cutoff, �, that defines the short-
time scale of the field theory, tuv � ��vb��1. Following
our general assumption, we regard gates as perfect and
with operation time tg 	 tuv.

Between gates, the exact time evolution of a qubit in the
interaction picture can be expressed as the product of two
vertex operators of the free bosonic theory, Un�t; 0� �

ei
�������
�=2
p

��	�n;t��	�n;0���zn , and a coherent evolution that is ir-
relevant to our discussion [12]. Hence, it is straightforward
to express the reduced density matrix as a bosonic corre-
lation function. In particular, for a single qubit in the initial
state j 0i � 
j "i � �j #i, the off-diagonal element is

 ��n�"# ��� � 
�
h0je
�����
2�
p

i��	�n;���	�n;0��j0i � 
�
e��; (6)

where j0i is the bosonic vacuum, � � �2 ln�1�
��vb��2�=2 is the probability of an error, and �vb�� 1.

QEC and the spin-boson model.—The simplest QEC
protocol is Steane’s three qubit code (see Fig. 1). It is
designed to protect a logical qubit from a single phase
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flip, that is from dephasing in lowest order in the coupling
to the environment. Thus, we illustrate our discussion of
QEC in correlated environments by applying this code to
three qubits that dephase according to Eq. (5).

The error set of a single logical qubit is E �
fI; �zj; �

z
j�

z
k�j; �

z
1�

z
2�

z
3g, where j, k � f1; 2; 3g. The logi-

cal Pauli matrix �Z � �z1�
z
2�

z
3 is contained in E. Thus, the

subgroup E0 � fI; �Zg can be used to partition the error set
into four equivalence classes, each with its respective
recovery operation, P$ R:
 

fI; �Zg $ I; f�z1; �
z
2�

z
3g $ �z1;

f�z2; �
z
1�

z
3g $ �z2; f�z3; �

z
1�

z
2g $ �z3: (7)

The first class, fI; �Zg, corresponds to a superposition of
the state where no error occurred, j encodei, and that with a
logical phase flip, �Zj encodei. Similarly, the other three
classes are superpositions of states with one and two phase
flips on physical qubits. When the recovery operations are
done, the logical qubit is once again a superposition of
j encodei and �Zj encodei. Although the final state is seem-
ingly the same, each possible evolution has a different
bosonic content.

The bosonic parts are written compactly by separating
the time evolution operator into ‘‘even’’ and ‘‘odd’’ orders:
Uj��; 0� � �j � ij�

z
j, where �j � cos�

����
2

p
��	�j; t� �

	�j; 0���, j � sin�
����
2

p
��	�j; t� � 	�j; 0���. Thus, the time

evolution by the end of a QEC cycle is
 

�0��; 0� � �1�2�3I � i123
�Z;

�1��; 0� � i1�2�3I � �123
�Z;

�2��; 0� � i�12�3I � 1�23
�Z;

or �3��; 0� � i�1�23I � 12�3
�Z:

(8)

Given a particular history of syndromes, w, it is straight-
forward to find both its likelihood, P ��w�, and the corre-
sponding contribution to the off-diagonal element of the
reduced density matrix, ��" �#��w�. For the moment, we
consider the case of qubits separated by a distance much
larger than vbN�, so that spatial correlations can be dis-
regarded. Although a very particular example, this is illus-
trative of the general discussion.

By the end of the first QEC cycle, there are two different
cases to consider: �w � �0 with probability P ��0� ’ 1�
3�=2 and �w � ��1;2;3� with P ���1;2;3;�� ’ �=2. Each one
causes an intrinsic dephasing for the logical qubit
 

��" �#��0� � 
�

3e�� � e�3�

1� 3e�2� ’ 
�



�
1�

�3

4
� . . .

�
;

��" �#���1;2;3�� � 
�
e�� ’ 
�
�1� �� . . .�: (9)

Note that by the end of a cycle with an ‘‘error,’’ the logical
qubit has suffered precisely the same decoherence as for an
unprotected physical qubit, Eq. (6). A cycle with such
decoherence has, however, become a ‘‘rare’’ event; this
exemplifies the benefit provided by QEC.

If there were no correlations (or in this case memory)
between QEC cycles, then the likelihood of an error would
be history independent and given by (9). In this uncorre-
lated limit, fault tolerance can then be proved [1,3].

Correlation between QEC cycles.—We now address to
what extent correlation between cycles changes the like-
lihood of errors. In the current example, the contribution to
P ��w� due to long-range correlation is elegantly evaluated
by the operator product expansion (OPE) [13]. The idea is
to express the evolution of the environment during each
cycle as a single operator that will capture the most rele-
vant contributions to the needed correlation functions.

In order to use the OPE, P ��w� must be reordered such
that operators with arguments closer in space and time are
put together. Hence, in the spin-boson case, all local op-
erators are products of�2

j and 2
j . The OPE decomposes �2

j

and 2
j into high frequency, ��1 <!< vb�, and low

frequency, !< ��1, parts. The high frequencies are inte-
grated out and the most relevant components of the low
frequencies are kept:

 A�  f1� e��: cos�
�������
2�
p

�@t	�j; 0���:g=2; (10)

where :: represents normal ordering, A� � �2
j and A� �

2
j . In essence, this procedure captures the long-range

effects on the environment of the dynamics imposed by
the QEC code by using operators which have the new
ultraviolet cutoff ��1. The leading order effects of corre-
lations in P ��w� are given by the effective operators

 �2
0  1� 3�=2�

X3

j�1

��2�2

2
:�@t	�j; 0��2:; (11)

 �2
j�f1;2;3g  �=2�

��2�2

2
:�@t	�j; 0��2: (12)

Hence, the probability, P ��w�, of a history w is easily
evaluated using Wick’s theorem and the fact that
h:�@t	�j; t��2::�@t	�j; 0��2:i ’ 1=�2�2t4�.

The simplest case is to calculate the probability of
having errors in the QEC cycles starting at times t1 and
t2. From Eqs. (11) and (12), it is straightforward that,

2

1

3

FIG. 1. Steane’s 3 qubit quantum error correction (QEC) code
[1]. The initial wave function, j 0i � �j"i � j#i�=2 � �j"i�
j#i�=2, is encoded by two controlled-NOT (CNOT) gates, RCNOT �

��i �
�
i �

x
j � �

�
i �

�
i , into an entangled state j encodei � 
j�"i �

�j�#i with j�"i � �j"""i � j"##i � j#"#i � j##"i�=2 and j�#i � �j###i �
j#""i � j"#"i � j""#i�=2. After some time, the information is de-
coded by a second pair of CNOT gates. An error in j i is
identified by measuring the value of �x2 and �x3 (rectangle).
The cycle of QEC ends with the correction of a possible phase
flip (arrow).
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in leading order in �, P �. . .�j . . .�j . . .� � ��=2�2 �
�4�4=�8�t1 � t2�

4�, where the first term is the uncorrelated
probability and the second is due to correlations between
errors in different cycles. Therefore, for N 	 1=�2 QEC
cycles, the probability of having two errors of any kind is
P 2 � ���=2�2 N

2

2 �
�4

8 N�. Thus, for an Ohmic bath and
finite operation time, correlations give a small correction
to the usual distribution of probabilities.

Reducing the effects of long-range correlations.—It is
well known that decoherence of a physical qubit can be
systematically reduced by applying a series of NOT gates at
a frequency higher than the bosonic cutoff [14]. Although
possible, the restriction !� vb� can be experimentally
very stringent. The analysis here implies that essentially
the same effect can be obtained for a logical qubit with
vb� replaced by ��1. For instance, a simple logical NOT,
�X � �x1�

x
2�

x
3, executed at half of each QEC cycle will

change dramatically the effects of correlations in
Steane’s 3-qubit code. Following the same steps as above,
we now find that although the local probability of an error
increases to � 3�=2, the operator that captures the corre-
lation between cycles is a second derivative of the bosonic
field. Hence, Eq. (12) would now read

 �2
j�f1;2;3g  3�=2� ���2�4=32�:�@2

t 	�2:; (13)

with �2
0 � 1�

P
j�f1;2;3g

2
j . The relevant two-point corre-

lation function now decays faster,1=t8, implying a much
reduced effect of correlations.

In the general case of an environment with spectral
function J�!� !s, this simple change in the QEC code
changes the decay of the relevant two-point correlation
function from 1=t2�s�1� to 1=t2�s�1�2n�, where n is the
number of logical NOTs in a cycle. Such a modification may
be overkill for the Ohmic case. However, for sub-Ohmic
baths, s < 1, this change in the QEC code tremendously
improves its effectiveness against correlations. Of particu-
lar importance is the fact that 1=f noise, so troublesome to
qubits based on superconductors, can be thought of as the
s! 0 limit of the sub-Ohmic case [9]. Hence, we have
shown that QEC codes can be improved so as to be
effective in this case.

The effects of spatial correlations are also straight
forward to discuss. The form of Eqs. (11)–(13) remains
the same; the order �2 terms are simply multiplied by an
overall prefactor of order 1 which depends on the geome-
try. Thus, applying the logical NOT will reduce the effect of
spatial correlations between logical qubits separated by a
distance larger than vb�.

Conclusions.—We have shown (1) that the dynamics of
QEC introduces a natural scale into the problem of qubits
coupled to a correlated environment, and (2) how to use
this scale to decrease the computational error. For the spin-

boson example, the result is a very useful combination of
QEC with dynamical decoupling: QEC handles the short-
time decoherence while dynamical decoupling on the time
scale established by QEC reduces the effect of long time
correlations.
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