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We show that a granular mixture subject to horizontal oscillations can be reduced to a monodisperse
system of particles interacting via an effective interaction. This interaction is attractive at short distances
and strongly anisotropic, and its features explain the system rich phenomenology, including segregation
and stripe pattern formation. Finally, we show that a modified Cahn-Hilliard equation, which takes into
account the characteristics of the effective interaction, is capable of describing the dynamics of the
mixture.
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Dynamical instabilities and pattern formation have only
recently begun to be fully investigated in granular materi-
als [1,2], which are collections of macroscopic particles
interacting via dissipative forces where thermal effects are
negligible. Understanding their origin in these systems,
which is crucial for scientific reasons and substantial in-
dustrial applications, is today a challenge as granular sys-
tems cannot be simply described by usual statistical or fluid
mechanics [2–7]. In this Letter we make a step further in
this direction by showing that a binary granular mixture
subject to a periodic drive can be reduced to a monodis-
perse undriven thermal system of particles interacting via
an effective potential. This result can be considered as an
extension, to the nonthermal and driven case, of the ‘‘de-
pletion potential‘‘ approach introduced by Asakura and
Oosawa [8] to reduce an undriven thermal binary mixture
to a monodisperse system, which has been also investi-
gated in granular systems [9]. However, while the deple-
tion potential has a purely entropic origin as related to the
size difference of the two components, the effective inter-
action we introduce here has a purely dynamical origin, as
it results from the different response of the mixture com-
ponents to the oscillating drive. Our approach could be also
of value in the study of driven thermal binary mixtures.

We apply our ideas to a granular mixture subject to
horizontal oscillations, a system previously investigated
both experimentally and numerically [2,10–12], whose
complex and not well-understood phenomenology encom-
passes both instabilities and segregation. First we discuss
how to measure the effective interaction force between like
particles. This is obtained by studying a system in which
two particles of a given species are held at a fixed distance
in a bath of particles of different species, in presence of the
external drive. Then we show that this effective force
captures the physical mechanism responsible for the ob-
served segregation and instability. Indeed, simulations of a
system of one species of particles interacting via the pre-
viously determined effective force, and in absence of the
external oscillating drive, show that these particles evolve
as if they were a component of the original driven granular
mixture. Finally, we introduce a phenomenological Cahn-

Hilliard equation which reproduces the observed phenome-
nology, but also allows for analytical predictions.

Model —We have investigated via molecular dynamics
simulations a two-dimensional model [2] of the experiment
of Ref. [10], where a monolayer of a granular mixture is
placed on a horizontally oscillating tray of size 160D�
40D (D � 1 cm). Contacting particles interact via a spring
dashpot repulsive force with constant coefficient of resti-
tution e � 0:8, while the interaction between a grain and
the oscillating tray is given by ftray � ���v� vtray�,
where vtray�t� � 2�A� sin��t�x is the velocity of the tray
and v the velocity of the disk, plus a white noise force ��t�
with h��t���t0�i � 2���t� t0� [see [2,13] for details]. The
two components of our mixture have masses mh � 1 g,
ml � 0:03 g, frictional coefficients �h � 0:28 g s�1 and
�l � 0:34 g s�1, while � � 0:2 g2 cm2 s�3, A � 1:2 cm,
and � � 12 Hz. The diameters of the two species consid-
ered here are equal, Dh � Dl � D � 1 cm, to remark that
no ‘‘entropic’’ depletion forces are present.

Effective interaction—The effective interaction is deter-
mined by making simulations in which two heavy disks are
placed at fixed relative positions r12 � r1 � r2 � �x; y� in
a system of lighter disks covering an area fraction� ’ 0:63
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FIG. 1 (color online). Radial component of the effective force
along directions forming an angle � with the x axis. For r=D< 1
the force is strongly repulsive.
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(we have sampled the range 0< x, y < 6D). When the tray
oscillates horizontally the two heavy disks are moved as a
single object of massM � 2mh subject to a force f � f1 �

f2 � �2ftray � 2fnoise�, where f1 (f2) is the force acting on
particle 1 (2) due to collisions with lighter disks. The two
disks can translate horizontally and vertically, but r12

remains fixed. The effective force that particle 1 exerts
on particle 2, averaged over one period of oscillation, T, is
given by

 f eff � �feff
x ; feff

y � �
1

2T

Z T

0
�f1�t� � f2�t��dt: (1)

Our numerical results show that this force is attractive at
short distances, and strongly asymmetrical in the xy plane:
it has a repulsive shoulder at long distances, which van-
ishes along the y axis. This is shown in Fig. 1, where we
plot the radial component of the effective interaction force
along directions forming an angle � with the x axis. The
effective force is weakly dependent on � (in the investi-
gated range 0< �< 10 g2 cm2 s�3), and its amplitude in-
creases with the area fraction of the smaller species.
Variations of the amplitude and frequency of oscillation
do not change the qualitative features of the effective force
(asymmetry, attraction at short distances, and repulsive
shoulder), but they change the range of attraction and the
position of the repulsive shoulder. Rigorously, the effective
force feff cannot be derived by an effective scalar potential,
as the curl of feff (r� feff � @yfeff

x � @xfeff
y ) varies in

space [the presence of a solenoid component in the effec-
tive interaction has been also reported in [14] for a system
of two disks in a constant fluid flow]. However, as the
solenoid component of feff appears to be negligible with
respect to its irrotational component [15], an effective
interaction scalar potential can be introduced within a
good approximation.

The effective force we derive (see Fig. 1) appears to be
the key ingredient in understanding the phenomenology of
our system. It follows from the different response of the
two components to the oscillating drive (the tray): due to
their differences in mass and friction coefficient, in fact,
the two species are forced to oscillate with different am-
plitudes and phases [6]. A qualitatively understanding of
the microscopic origin of the effective force can be ob-
tained by considering the simpler case where two disks of a
given species [striped disks in Fig. 2(a) and 2(b)] are
immersed in stream of disks of a different species flowing
along the x axis with velocity v > 0. Figure 2(a) illustrates
that, as �1 < �2, the majority of the collisions experienced
by grain A push it closer to grain B, explaining the attrac-
tion between particles A and B along y. Figure 2(b) shows
that, for small distances, particle A screens particle B,
inducing an effective attraction between them along x.
For larger distances, and in the presence of the oscillating
drive, light disks tend to be caged between the two heavy
ones, and their density may become higher than average, as
shown in Fig. 2(c). In this condition the competition be-

tween the collisions experienced by the heavy disks from
the caged light disks, which push them apart, and those
experience from the surrounding disks, which push them
together, is won by the caged disks and results in an
effective repulsive force.

Segregation and instability—The effective force, feff ,
was derived for a system of just two heavy grains in a
‘‘bath’’ of lighter ones. For a system with many heavy
grains this is, in general, expected to be just an approxi-
mation. We checked, however, that feff captures the basic
physical mechanism responsible for segregation via stripes
formation in the investigated system. To this aim we run
simulations of a monodisperse system of heavy disks only,
where disks interact pairwise via the effective force pre-
viously determined. As in the original mixture the disks are
also subject to a frictional force (ftray � ��hv) and to a
white noise force �. They are placed on a fixed tray of size
160D� 40D and cover an area fraction � ’ 0:5.

Figure 3(a) shows that this system evolves, from an
initially disordered configuration, via the formation of
interconnected clusters that at long times break into a
pattern of stripes parallel to the y direction. This is pre-
cisely the behavior exhibited by each single component of
the original horizontally oscillated binary mixture of disks
in simulations [see Fig. 1b of Ref. [2] ] and experiments
[10]. An insight on the system behavior can be gained via
an analogy with thermal systems with short range attrac-
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FIG. 2 (color online). The effective interaction between two
heavy disks is determined via screening effects by their relative
position, as discussed in the text an exemplified in panels (a), (b).
Panel (c) is a contour level plot of the density field of light disks
in an oscillating system. Panel (c) has been obtained by averag-
ing over 100 configurations taken in the frame of reference
centered in the midpoint between the two heavy disks (kept at
the fixed distance of 3:75D) at time tn � nT � t0, n �
1; . . . ; 100, where t0 � T=4. Qualitatively similar results are
obtained for different values of t0 < T. The regularity of the
isodensity lines is due to steric constrains. Filled area represent
regions where the density is above (about twice) the average.
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tion and long range repulsion [16]. In these systems the
short range attraction, which tends to induce a macroscopic
phase separation with the formation of a single large
cluster in the system, is frustrated by the presence of the
long range repulsion adversing large clusters. Depending
on the relative strength of attraction and repulsion, the
attraction may dominate and the system will eventually
phase separate via the standard coarsening mechanism;
otherwise, if the repulsion dominates the coarsening pro-
cess eventually stops when a typical domain width is
reached, resulting in the formation of striped patterns
[16]. In our granular system, as the long range repulsive
component of the effective force vanishes along the y axis
(see Fig. 1, � � �=2), cluster growth along y is not frus-
trated. Along x the relative strength of the repulsion is
small compared to the attraction, and the coarsening pro-
cess will therefore proceed slowly as long as the external
driving keeps going. The asymmetry of the interaction
force therefore explains the formation and the orientation
of the striped pattern.

At low values of � the stripes appear to be formed by
disks in an ordered state [see Fig. 3(a)]. At a higher value of

� the stripes appears fluidlike, while at still higher values
the system does not segregate. The same behavior is ob-
served when � is varied in simulations [2], or when the area
fraction of one of the two components is decreased [2,10].

The effective interaction explains as well the occurrence
of the dynamical instability generating the above striped
pattern [2]. The instability is best visualized when the
initial state of the system is not disordered, but disks
interacting with the effective force are placed on the tray
in a stripe parallel to the x direction [see Fig. 3(b)]. In this
condition the initially flat free surface develops a sinelike
modulation which grows until it breaks giving rise to a
pattern of alternating stripes perpendicular to x direction.
The same phenomenology is observed when the two com-
ponents of the granular mixture are placed on the oscillat-
ing tray in two stripes parallel to the x direction [see, for
instance, Fig. 1a of Ref. [2] ].

Cahn-Hilliard approach—As the Cahn-Hilliard equa-
tion captures the general features of spinodal decomposi-
tion of thermal binary mixtures [see [17] for a review],
regardless of the details of the interaction potential be-
tween the two components, we expect that a phenomeno-
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FIG. 3 (color online). Panels (a), (b): Evolution of a system of disks interacting via the effective force shown in Fig. 1. Lengths are
expressed in units of particles diameters. Panel (a) (periodic boundary conditions in both direction) shows the evolution from an
initially disordered state at t � 0, 4, and 100 s, while panel (b) (periodic boundary conditions only alog x) shows the evolution from an
initially ordered state at t � 0, 8, and 300 s. Each single component of a granular mixtures subject to horizontal oscillations evolves in
a similar way [2]. Panels (c), (d): solution of the modified Cahn-Hilliard equation [Eq. (2)], with Ky=2 � Kx � 1 in a system of size
200� 32 with periodic boundary conditions along x and no flux boundary conditions along y. Panel (c) shows the evolution from an
homogeneous initial condition at times t � 0, 100, 2500, while panel (d) shows the evolution from a segregated initial condition at
times t � 0, 750, 2500. The color scale is a measure of the density difference field.
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logical Cahn-Hilliard equation may capture the properties
of our granular system when coarsening is observed.
Therefore, we have investigated a Cahn-Hilliard equation
for the density difference c� ~r� � �1� ~r� � �2�~r� of the two
components, which takes into account the anisotropy found
in the effective force field

 

@c�~r�
@t

� Mr2

�
@f
@c
� �Kx@2

x � Ky@2
y�c

�
� 	: (2)

Here M is a mobility and 	 a Gaussian random noise [18],
f�c� the usual double-well potential leading to phase sepa-
ration, whereas the term Kx@

2
x � Ky@

2
y accounts for the

‘‘free energy’’ cost associated to concentration gradients.
In the present case, as the effective interaction is not
spherically invariant, the cost of an interface depends on
its orientation. Schematically we take this into account by
assuming Ky > Kx (in case of radial isotropy Kx � Ky)
since interfaces (i.e., concentration gradients) along y
‘‘cost more’’ than interfaces along x. We show in
Fig. 3(c), which considers the case in which the initial
state is homogeneous, and in Fig. 3(d), which reproduces
the instability of an initially flat interface between the two
components, that this phenomenological equation gives a
good description of the dynamics. A quantitative agree-
ment is also found as the Cahn-Hilliard equation predicts a
coarsening exponent � � 1=4 during the first coarsening
regime [19], which is numerically equal to the one ob-
served in both experiments and simulations [7,10].
According to the Cahn-Hilliard equation we expect, how-
ever, a crossover [19] to � � 1=3 at much longer times, not
yet observed in experiments and simulations.

Conclusions—In this Letter we have generalized the
effective interaction approach, widely used in the study
of colloidal systems, to out-of equilibrium periodically
driven mixtures, and specifically to the case of a granular
mixture subject to horizontal oscillations. In this context
the effective interaction approach is particularly useful, as
it reduces the study of an out-of equilibrium nonthermal
driven system (dissipative in the case we have explicitly
investigated), to that of an ‘‘equilibrium’’ monodisperse
system. For a granular mixture subject to horizontal oscil-
lations, the effective interaction force, whose fundamental
characteristic is its directional anisotropy, and particularly
the presence of a repulsive shoulder at long distances
which is prominent in the direction of oscillation, allows
for a clear understanding of the observed instabilities and
segregation processes. Its features can be cast in a phe-
nomenological Cahn-Hilliard equation which reproduces
the observed phenomenology and allows for analytical
predictions. Our findings clarify, thus, the origin of the
‘‘differential drag’’ mechanism [12] proposed to describe
the observed phenomena and show how to interpret phe-
nomenological hydrodynamics models [11] used to depict
the early stages of the stripe dynamics.
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