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In this work, we consider decoherence of a central spin by a spin bath. In order to study the
nonperturbative decoherence regimes, we develop an efficient mean-field-based method for modeling
the spin-bath decoherence, based on the P representation of the central spin density matrix. The method
can be applied to longitudinal and transverse relaxation at different external fields. In particular, by
modeling large-size quantum systems (up to 16 000 bath spins), we make controlled predictions for the
slow long-time decoherence of the central spin.
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Detailed understanding of decoherence is important for
many areas, from quantum optics and solid-state physics to
quantum computation (QC). For example, in a quantum
dot-based architecture for QC, the quantum bit is repre-
sented by a spin of a single electron (central spin) placed in
a quantum dot. Due to interaction with the bath of nuclear
spins in a dot, the electron spin quickly ‘‘loses memory’’
about its initial orientation and cannot be used for compu-
tation. Experimental studies of this process have become
possible very recently [1,2], and detailed theoretical under-
standing of the experimental results is timely and impor-
tant. Also, the problem of a central spin coupled to the spin
bath [3] (the ‘‘quantum central spin problem’’) has recently
arisen in other contexts (decoherence in magnetic mole-
cules, dynamics of the BCS condensates) [4,5] and has
attracted much attention.

Decoherence is a complex quantum many-body phe-
nomenon, and satisfactory solutions can be obtained only
in special cases [6,7]. Perturbation theory can be success-
fully applied in the case of a strong magnetic field or
polarized nuclear spin bath (which produces a strong
Overhauser field acting on the central spin) [8,9]. But for
the experimentally important nonperturbative regimes, no
well-justified method, numerical or analytical, has been
suggested yet. The frozen-bath approximation [7,10,11]
works only at short times, while the interesting long-time
dynamics of the central spin remains an open problem.

Below, we present a novel approach to the quantum
central spin problem based on time-dependent mean-field
(TDMF) theory. It has been pointed out [5,12] that the
mean-field approach should be adequate, since the central
spin simultaneously interacts with a large number N of the
bath spins (loosely speaking, the number of the ‘‘nearest
neighbors’’ for the central spin is large). However, the
standard TDMF [13] gives a bad approximation (see be-
low). We use the spin-coherent-state P representation [14]
to modify the standard TDMF and present an efficient
approach, which gives excellent agreement with the exact

solution of the many-spin quantum problem already for
rather small systems (up to 20 spins). By applying this
method to large-scale problems, where exact simulations
would be astronomically long, we study the interesting
long-time dynamics of the central spin. Moreover, the
P-representation approach allows us to understand why
the corrected TDMF theory works for large N and what
the limitations of the method are.

While spin-coherent states are traditionally used in the
spin path integrals and in the semiclassical approximation
for quantum spins, the powerful methods based on P andQ
representations, so useful in quantum optics, have not been
widely applied to quantum spin systems. Another interest-
ing point concerns the basic ideas of the mean-field theory.
The standard TDMF approximates, in the optimal way, the
exact many-spin wave function as a product of single-spin
wave functions. However, when studying decoherence, we
are interested only in the state of the central spin, not the
whole many-body state, and there is a justified modifica-
tion of the standard TDMF, presented below, which pro-
vides an excellent approximation for the relevant
observables (the state of the central spin) at the expense
of irrelevant information (the state of the bath).

The electron spin interacting with a bath of N nuclear
spins in a quantum dot is described by the Hamiltonian
which includes the Zeeman energy of the electron spin in
the external magnetic field B0 and the contact hyperfine
coupling:

 H � g�e�BB0S
z
0 �

XN
k�1

AkSkS0 � H0S
z
0 �

XN
k�1

H k; (1)

where S0 � �S
x
0; S

y
0; S

z
0� are the operators of the electron

spin, Sk are the operators of the bath spins, and Ak �
�8�=3�g�e�Bgn�nu�xk� is the contact hyperfine coupling
which is determined by the electron density u�xk�2 at the
site xk of the kth nuclear spin and by the Landé factors of
the electron g�e and of the nuclei gn. The terms omitted in
Eq. (1), such as the Zeeman energy of the nuclear spins, the
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anisotropic part of the hyperfine coupling, etc., are very
small and can be neglected in many experimental situ-
ations. Equation (1) is the standard Hamiltonian of the
quantum central spin problem [3].

We are interested in the dynamics of the central spin,
i.e., in the dynamics of s0�t� � Tr��t�S0, where ��t� is the
density matrix of the total system (central spin plus the
bath). Although the quantum central spin problem is inte-
grable, the formal solution [3] is very complex, and, to our
knowledge, it has not yet been used for actual calculations
of s0�t�. Efficient approximate approaches are needed, and
the TDMF theory is a natural first step: We approximate the
wave function j�i of the total system as a product j�i �
j 0i

NN
k�1 j ki of the single-spin wave functions j ji. The

TDMF equations of motion (EOM) for j ji are obtained by
substituting this ansatz into the Dirac’s functional D �R
dth�ji�d�=dt� �H�i and requiring �D � 0 with re-

spect to variations of j ki. The resulting EOM are

 

_s j � �hj � sj	 �j � 0; . . . ; N�; (2)

 h 0 � H0ez�
X
k

Aksk; hk � Aks0 �k� 1; . . . ; N�;

(3)

where sj � Tr��t�Sj, and [hj � sj] is the vector product of
hj and sj. The physical meaning of these equations is
simple: Every jth spin precesses in its own time-dependent
effective field hj given by Eq. (3). However, TDMF theory
gives a very bad approximation and strongly disagrees with
the exact numerical solution [15]; see an example in Fig. 2.

To construct a working approximation based on the
TDMF, we use the P representation of the system’s
density matrix in the basis of spin-coherent states [14].
The coherent state for spin J is defined as j�i�
N

P2J
m�0f�2J�!=�m!�2J�m�!	g1=2�mjJ�mi, where N �

�1�j�j2��J is the normalization constant. For a spin 1=2,
the coherent state has a simple form j�i � cos��=2�j"i �
sin��=2�ei�j#i, where we used the parametrization � �
tan��=2�ei�. The basis of coherent states is overcomplete,
and by choosing an appropriate real-valued function
~A��;��, any Hermitian operator A can be represented in
a diagonal form: A �

R
�

~A��;��j�ih�j sin�d�d�, where
the integration is performed over the sphere [16]. The
diagonal representation of the many-spin density matrix
� via a real-valued function p�f�j; �jg; t�,

 ��t��
Z
p�f�j;�jg;t�

ON
j�0

j�jih�jj
YN
j�0

sin�jd�jd�j; (4)

is called the P representation [14] (f�j;�jg denotes the set
of all �0; . . . ; �N and �0; . . . ; �N). In the P representation,
the quantum-mechanical average x � Tr���t�X	 of any
observable X can be calculated simply

 x �
Z
p�f�j; �jg; t�

ON
j�0

h�jjXj�ji
YN
j�0

sin�jd�jd�j: (5)

Our goal is to model the evolution of the function
p�f�j; �jg; t�, but the direct solution of the complex partial
differential equation for p�f�j; �jg; t� is impossible for
large N. Instead, we note that if p�f�j; �jg; t� 
 0, then
this function can be interpreted as a probability for the
system to be in the product state j�i �

NN
j�0 j�ji, and

we need to simulate the dynamics of the probability dis-
tribution p�f�j; �jg; t�. To do that, we initially generate

many realizations of the random vector ���m�0 ; . . . ; ��m�N ;
��m�0 ; . . . ; ��m�N � distributed according to the probability
distribution p�f�j; �jg; 0� (the index m � 1; . . . ;M enu-
merates the different realizations). Then we propagate
every initial vector ���m�0 ; . . . ; ��m�N ;��m�0 ; . . . ; ��m�N � in time,
so that after a lapse of time t, it evolves into a vector
���m�0 �t�; . . . ;��m�N �t�;�

�m�
0 �t�; . . . ;��m�N �t��. If the EOM for

all the variables ��m�j �t� and ��m�j �t� are chosen correctly,
then the function p�f�j; �jg; t� � p���j�t�;�j�t��, and
the value x � Tr���t�X	 of any observable X can be cal-
culated as an average over all realizations: x � 1

M �PM
m�1 sin��m�j

NN
j�0h�

�m�
j ;��m�j jXj�

�m�
j ;��m�j i.

To implement this approach, we need to determine the
EOM for �j�t�, �j�t� which would produce a good ap-
proximation for p�f�j; �jg; t�. First, let us find the exact
EOM for p�f�j; �jg; t�. For simplicity, let us study one term
in the Hamiltonian (1); i.e., we consider two spins 1=2 (the
central spin and the kth bath spin) coupled by the isotropic
Heisenberg interaction H k � AkS0Sk. The most general
form for the two-spin density matrix is � � w00101k �
w0�10�

�
k � w	0�

	
0 1k � w
��
0�

�
k , where � � x; y; z (and

similarly for other Greek indices), and ��0 and �	k denote
the Pauli matrices for the 0th and the kth spin, respectively.
Here and below, we assume summation over the repeating
indices. From von Neumann’s equation _��t� � i���t�;H 	,
we obtain _w00�t� � 0 [which expresses that Tr��t� � 1],
and
 

_w0��t� �
Ak
2

�	�w�	�t�;

_w�0�t� � �
Ak
2

�	�w�	�t�;

_w�	�t� �
Ak
2

�	��w�0�t� � w0��t�	;

(6)

where 
�	� is a completely antisymmetric unity tensor
(permutation symbol). These EOM determine the dynam-
ics of p�f�0; �0; �k; �kg; t�. From the P representation (4),
it follows that p�f�0; �0; �k; �kg; t� � p00�t� � p0��t�c

�
k �

p	0�t�c
	
0 � p
��t�c



0c

�
k , where p00 � �1=4�2�w00, p0� �

�3=4�2�w0�, p�0 � �3=4�2�w�0, and p�	 �
�9=4�2�w�	. Here we used the shorthand notations cx0 �
sin�0 cos�0, cy0 � sin�0 sin�0, cz0 � cos�0 (and similarly
for cxk, c

y
k, c

z
k). The spherical harmonics of the order two

and higher in p�f�0; �0; �k; �kg� are irrelevant: They do not
change the density matrix [16].
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The P representation for the many-spin density matrix
(4) has a mean-field form; i.e., it is a product of single-spin
density matrices j�jih�jj. This suggests that the equations
of motion for f�0�t�;�0�t�;�k�t�;�k�t�g should also have
a mean-field form corresponding to Eq. (2). However, the
local fields should be redefined to provide an optimal
approximation for s0�t�. For simplicity, we omit the dis-
cussion of the general form for h0�t� and hk�t� and proceed
to the answer. We introduce the shorthand notations Cx0 �
sin�0 cos�0, Cy0 � sin�0 sin�0, Cz0 � cos�0 (and simi-
larly for Cxk, C

y
k, C

z
k) and postulate the following EOM:

 

_C 0 � g1�Ck �C0	; _Ck � �g2�Ck �C0	 (7)

[cf. Eq. (2)], where g1 and g2 are to be determined. By
substituting these equations into the probability distribu-
tion p�f�0�t�;�0�t�;�k�t�;�k�t�g� � P00 � P0�C

�
k �

P	0C
	
0 � P
�C



0C

�
k , and using the P representation (4),

we obtain the following EOM for the density matrix �:
 

_w0��t� � �g2
�	�w�	�t�; _w�0�t� � g1
�	�w�	�t�;

_w�	�t� � �1=3�
�	��g2w0��t� � g1w�0�t�	; (8)

[cf. Eqs. (6)], and _w00�t� � 0. Equations (6) and (8) are
incompatible; i.e., TDMF is never exact. However, we are
interested only in w�0�t�, since only this term determines
the value of s0�t�. Therefore, we choose g1 � g2 � g �
Ak

���
3
p
=2 and differentiate Eqs. (6) and (8) with respect to

time once more. Then both Eqs. (6) and (8) produce the
same result: �w�0�t� � � �w0��t� � �A

2
k=2��w0� � w�0�.

Thus, the functions w�0�t� produced by the approximate
Eqs. (7) and by the exact Eqs. (6) coincide, provided that
the initial conditions w�0�0� and _w�0�0� also coincide. The
latter condition is satisfied when all w�	�0� � 0, so the
method described above is applicable only to unpolarized
baths. For polarized baths, one can use the perturbational
approaches [8,9], so this limitation is not serious.
Therefore, in order to fix the standard TDMF in the case
of spins 1=2, we just need to replace Ak by Ak

���
3
p
=2 in

Eqs. (3). It may seem that we just derived the standard
semiclassical EOM, but this is not correct. For instance, if
we take unequal spins 1 and 1=2 (S0 � 1 and Sk � 1=2),
then the analysis above gives g1 � Ak

���
3
p
=2, g2 �

Ak
���
7
p
=2, while the semiclassics would give g1 �

Ak
���
3
p
=2, g2 � Ak

���
2
p

. Moreover, the initial conditions in
our approach and in the semiclassical approximation are
different. For example, if the central spin 1=2 is initially
directed along the z axis, then the initial density matrix
��0� � 2�Nj"ih"j

NN
k�1 1, and our approach requires

p�f�j; �jg; 0� � �4���N�1�1� 3 cos�0�, while the semi-
classics would correspond to p�f�j; �jg; 0� �
�4���N�1��cos�0 � 1�, where ��. . .� is the Dirac delta
function.

The approach developed above gives excellent results at
both short and long times, for different distributions of the
couplings Ak, for various fields H0, for both longitudinal

and transverse relaxation, and for mixed initial state of the
central spin. A small fraction of the representative tests for
a moderate number of bath spins (N � 15–20) is shown in
Figs. 1 and 2, where we used the Chebyshev expansion
method [15] for exact solutions. The longitudinal decay
shown in Fig. 1 is typical; the long-time tail suggests the
slow relaxation sz0�t� � 1= lnt, but the results are not con-
clusive, since for moderate-sized systems sz0�t! 1� satu-
rates at a value far from zero. We have to study much larger
systems, where exact simulations are not possible due to
exponential increase in computation time, and to use the
approximate method.

We considered systems with N � 1000–16 000 spins.
For small N � 2–5, our approximation is very crude be-
cause the EOM (7) leads to the appearance of higher-order
spherical harmonics in the function p�f�j; �jg; t� (the terms
proportional to c�0 c

	
0 c



kc

�
k , etc.). These terms do not change

��t� [they disappear after integration in Eq. (4)], but they
affect the EOM for physically relevant terms; i.e., the
actual EOM for w�0�t� becomes �w�0�t� � �A2

k=2��w0� �

w�0� � V, where V is the contribution from the higher-
order harmonics. However, the contribution of V into s0�t�
is bounded and quickly decreases for larger N, so we
expect our approximation for s0�t� to work better the larger
N is. This is natural, since our method is based on TDMF,
which works better for larger number of bath spins coupled
to the central spin. Moreover, this assumption is well-
confirmed by numerical tests. In Fig. 3, we present the

FIG. 1 (color). (a) Longitudinal sz0�t� and (b) transverse sx0�t�
relaxation of the central spin 1=2 coupled to a bath of N � 21
spins 1=2. Couplings Ak are randomly distributed between 0 and
1.0, external fields are (a) H0 � 0 and (b) H0 � 60:0. Solid
lines—exact solutions, open circles—approximation. Agree-
ment is excellent.

FIG. 2 (color). Longitudinal relaxation sz0�t� of the central
spin, couplings Ak are randomly distributed between �0:4 and
0.6, field H0 � 1:0. (a) Central spin 1=2, N � 21 bath spins;
(b) central spin 1, N � 19 bath spins. Solid lines—exact solu-
tions, open circles—our approximation; agreement is excellent.
Dashed lines—standard TDMF; the disagreement with the exact
solution is significant.
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long-time longitudinal relaxation of an electron spin in a
model quantum dot; we assumed that the bath spins 1=2 are
placed at the sites of a piece of a cubic lattice with the size
Nx � Ny � Nz (Nx � Ny � 40, Nz � 10, so the total num-
ber of bath spins N � NxNyNz � 16 000). The long-time
relaxation clearly demonstrates that sz0�t� � 1= lnt (see
[17]). Our studies show that the 1= lnt decay holds for
unpolarized baths for different forms of the electron den-
sities, i.e., for different distributions of Ak (two examples
are given in Fig. 3).

Our approach also performs well (see Fig. 4) for an
anisotropic X-Y coupling between the central and the
bath spins H � H0S

z
0 �

P
kAk�S

x
0S

x
k � S

y
0S

y
k�, which is

important for analyzing experiments of Ref. [2].
Figure 4(b) shows good qualitative agreement with the
experimental curves [2], but the experiments are performed
with �5%–10% bath polarization, and further develop-
ment is needed for quantitative analysis.

Summarizing, we used the spin-coherent states P repre-
sentation to develop a novel approach to the quantum
central spin problem. The approach gives excellent agree-
ment with the exact solutions and is valid for a wide range
of systems and conditions. We use it to study the long-time

longitudinal relaxation of the electron spin in a quantum
dot and find that the slow decay 1= lnt is observed in
different situations. Our approach provides an interesting
extension of the mean-field theory and is applicable to
many-spin central systems as well.
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FIG. 3 (color). Long-time relaxation of the central spin 1=2
coupled to a bath of 16 000 spins 1=2, fieldH0 � 0. Graphs show
1=sz0�t� as a function of lnt. The coupling constants were calcu-
lated as Ak � �1=14�u�xk�, where u�x� is the electron density.
(a) u�x� is taken as a Gaussian with the half-widths dx � 8:4a,
dy � 9:1a, dz � 2:2a (a is the lattice parameter), shifted from
the center of the lattice by the vector (0:252a, 0:448a, 0:1a;
(b) u�x� is taken as an exponential function of x, with the same
parameters. We used an extra averaging over 20 neighboring
time points to decrease the number of realizations. The solid
lines are obtained from raw data.

FIG. 4 (color). Longitudinal relaxation sz0�t� of the central spin
1=2 coupled to a bath of spins 1=2 via the anisotropic X-Y
Hamiltonian, external field H0 � 1:0. (a) N � 21 bath spin, Ak
are randomly distributed between 0 and 1.0. Solid line—exact
solution, open circles—approximation. (b) N � 2000 spins, the
couplings Ak are the same as in Fig. 3(a), but for smaller lattice
Nx � Ny � 20, Nz � 5.
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