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Quantum Spin-Hall Effect and Topologically Invariant Chern Numbers

D.N. Sheng,' Z.Y. Weng,”> L. Sheng,? and F. D. M. Haldane*

1Departmem‘ of Physics and Astronomy, California State University, Northridge, California 91330, USA
Center for Advanced Study, Tsinghua University, Beijing 100084, China
3Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, USA

“Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
(Received 6 March 2006; published 21 July 2006)

We present a topological description of the quantum spin-Hall effect (QSHE) in a two-dimensional
electron system on a honeycomb lattice with both intrinsic and Rashba spin-orbit couplings. We show that
the topology of the band insulator can be characterized by a 2 X 2 matrix of first Chern integers. The
nontrivial QSHE phase is identified by the nonzero diagonal matrix elements of the Chern number matrix
(CNM). A spin Chern number is derived from the CNM, which is conserved in the presence of finite
disorder scattering and spin nonconserving Rashba coupling. By using the Laughlin gedanken experiment,
we numerically calculate the spin polarization and spin transfer rate of the conducting edge states and

determine a phase diagram for the QSHE.
DOI: 10.1103/PhysRevLett.97.036808

Topological quantities are fundamentally important in
characterizing the transverse electrical transport property
in integer and fractional quantum Hall effect states [1,2] of
two-dimensional (2D) electron systems. It was first re-
vealed by Thouless et. al. [3] that each integer quantum
Hall effect (IQHE) state is associated with a topologically
invariant integer known as the first Chern number, which
precisely equals the Hall conductance in units of e?/h. The
exact quantization of the Hall conductance can also be
formulated in terms of a 2D band-structure Berry phase
[3-6], which remains an integral invariant till the band
energy gap (or the mobility gap [7] in the presence of
disorder) collapses.

While the conventional IQHE is usually associated with
strong magnetic fields, Haldane [8] has explicitly shown
that it can actually occur in the absence of magnetic field in
band insulators with graphenelike band structure. The one-
component Haldane model explicitly breaks time-reversal
symmetry, resulting in a condensed-matter realization of a
parity symmetry anomaly with chiral edge states at the
boundary of the sample. In realistic electron systems,
however, the coupled spin degrees of freedom can recover
the time-reversal symmetry by forming Kramers degener-
ate states, which belong to the universality class of zero
charge Chern number as the total Berry curvature of the
occupied energy band of both spins sums to zero.

This class of insulators has been recently found [9,10] to
possess a dissipationless quantum spin-Hall effect (QSHE)
[11], which is distinct from the intrinsic spin-Hall effect in
the metallic systems [12]. The QSHE has been shown to be
robust against disorder scattering and other perturbation
effects [9,10]. Whether there exists an underlying topo-
logical invariant “protecting”” the QSHE is a very impor-
tant issue for both fundamental understanding and
potential applications of the QSHE. While the previously
proposed [9,13] Z, classification of the QSHE suggests
that the conducting edge states are protected by time-
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reversal symmetry, it does not distinguish between two
QSHE states with spin-Hall conductance (SHC) of oppo-
site signs. Thus it remains an open issue if the QSHE states
can be classified by a more definite topological quantum
number similar to the Chern number for the conventional
IQHE.

In this Letter, we clarify the topological nature of the
QSHE in the graphene model with spin-orbit coupling. We
present numerical evidence that a pair of nonchiral con-
ducting edge states is responsible for the dissipationless
spin current in the open system with disorder scattering.
The spin transfer and spin accumulation are calculated,
which increase linearly with the flux insertion in the
Laughlin gedanken experiment [14]. We further establish
the relation between the conducting edge states, the topo-
logical invariant Chern number matrix (CNM), and a spin
Chern number for the bulk system with electron Fermi
energy lying inside the band gap. The nontrivial spin
Chern number distinguishes a QSHE state from an ordi-
nary band insulating state and is responsible for the robust
quantum SHC.

We begin with the 2D honeycomb lattice model [8—10],
which is relevant to the 2D electrons in a single-atomic
layer graphene system [15]:

2i
H() = _IZCZTCJ + ﬁVSOzCITO' . (ko X dik)cj
i iy
+ lVRZC;ri . (O' X dlj)Cj + ZWZ‘C;"-CZ’, (1)
(ij) i
where cj = (c;rT, c:rl) are electron creation operators and o
is the Pauli matrix. The first term is the usual nearest
neighbor hopping term, and the second term is an intrinsic
SO coupling preserving the lattice symmetries with i and j
as two next nearest neighbor sites and k their unique

common nearest neighbor. Here, the vector d;; points
from k to i, with the distance between two nearest neighbor
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sites taken to be unity. The third term stands for the Rashba
SO coupling with strength Vp, and the last term represents
an on-site random disorder with strength |w;| = W/2.

In the absence of the Rashba SO coupling V; = 0, the
model Eq. (1) reduces to a two-component Haldane model
[8], which exhibits a quantized SHC o,y = *£2 ;£ with
sign depending on the sign of Vq. In the following, we will
perform systematic numerical simulations designed to re-
veal the topological characteristics of such a nontrivial
band insulator in the general case of finite Vp with disorder
scattering.

Gauge experiment and edge states free from backward
scattering.—Let us first study a rectangular geometry of a
honeycomb lattice consisting of N, zigzag chains with N,
atom sites on each chain. A twisted boundary condition is
imposed [16] in the ¥ direction, and an open boundary
condition is used in the X direction. Since the boundary
phase 6, does not depend on spin, the system is also

equivalent to a cylindric geometry threaded by a flux ® =
20—7"'7 in the axial direction (X direction), similar to that used in
the Laughlin gedanken experiment [14] for IQHE.

We find that some new states emerge within the bulk
energy gap —0.1¢ < E,, <0.2¢ with the density of states
much smaller than that of the bulk states outside the energy
gap. These midgap states can be identified as edge states
with their wave functions localized within a few lattice
constants at the two open boundaries in the X direction and
extended along the § direction. The edge states continu-
ously evolve and cross each other with increasing 6, as
shown in Fig. 1 for V4o = 0.05¢, Vx = 0.05¢, W = 1.0z,
and system size N = N, X N, = 480 X 240. Similar to
IQHE, the level crossing of the edge states in Fig. 1 clearly
demonstrates the absence of backward scattering, and thus
each state will not simply evolve back to its original state
after the insertion of one flux quantum ® =1 (or 0, =
27), which leads to an adiabatic transverse transport of
spins from one edge to the other [16]. For a Fermi energy
E inside the band gap, as indicated by the dashed line in

Fig. 1, there is always a pair of edge states crossing the E
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FIG. 1. The evolution of edge levels inside the bulk gap with

twist boundary phase 6, in a cylindric 2D sample of N = 480 X
240, Vso = 0.057, Vi = 0.05¢, and W = 1.01.

line and evolving out of the Fermi sea. It can be identified
in the real space as moving oppositely, either from the left
edge to the right one or vice versa, and thus it does not
contribute to a net transverse electric charge transport.

Robust spin polarization carried by the edge states.—
We then explicitly compute the spin polarization P, =
B(m|¥ ;¢ o%c;lm) along the Z direction with |m) as the mth
single-particle eigenstate. Spin polarizations along the X
and y directions are found to be much smaller. At 6, = 0,
all the eigenstates form Kramers degenerate pairs, and each
pair carries totally zero spin due to time-reversal symme-
try. We find that upon insertion of the flux (6, # 0), a
nonzero spin polarization is quickly developed for each
edge state. Figure 2 shows the spin polarization of each
eigenstate as a function of eigenenergy E,, at 6, = 277/48.
The spin polarization is finite only for the edge states
within the energy gap and insensitive to disorder configu-
rations and sample sizes, as all the data points nicely
collapse together. We find that P%, is mainly affected by
the Rashba coupling V and decreases monotonically with
increasing Vp.

Spin transfer rate and phase diagram.—Now we can
determine the spin transfer by the edge states with the
adiabatic insertion of the flux. There is always a pair of
states crossing the E; = 0 line from below, as shown in
Fig. 1. One state carries a positive P%,, which moves to the
right edge of the sample, and the other with negative P},
moves to the left edge, as determined from the wave
functions. Thus after the insertion of one flux quantum
(6, = 0 — 2m), a net spin transfer occurs, which results
in spin accumulations at the two open edges of the sample.

We can determine the average spin transfer rate y by using

A(Sedge __
g = (Sz)edgeb:zw - <Sz>edge|0=0

. / .
with (§%)eqee = > P, where the summation runs over
m

the relation vy =

only the edge states at the right edge. As shown in
Fig. 3(a), the spin transfer rate remains about 1.8 (in units
of /%) till a critical disorder strength W, ~ 2.4t is reached,
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FIG. 2 (color online). Spin polarization P%, defined in the text
(in units of #/2) as a function of eigenenergy E,, for two random
disorder configurations (we have checked over 100 configura-
tions) of strength W = 1.0¢ at different system sizes N = 120 X
120-480 X 480 (with N, = N, = L). Vo and V} are the same
as in Fig. 1.
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FIG. 3 (color online). (a) Spin transfer rate y = % (in
units of e/47) vs disorder strength W at Vgg = 0.05¢ and Vj =
0.05¢ averaged over 500 disorder configurations. (b) The phase
boundary for the QSHE determined from the spin transfer, where
the transition happens with a change of the numbers of edge
channels from Negge = 2 t0 Negge = 0.

beyond which vy vanishes quickly. By analogy with IQHE
[14], the spin transfer rate corresponds to a finite SHC of
value around 1.8;%, which is nonquantized as spins are
nonconserved. By determining critical W,. at different V’s
through the calculation of the spin transfer rate, we obtain a
phase diagram in the parameter plane of the Rashba cou-
pling Vi and disorder strength W, which is shown in
Fig. 3(b). We find that such a phase boundary is well
correlated with the collapse of the bulk energy gap. In
Fig. 4(a), we show that when W = 2.2¢ is very close to
W, = 2.4¢, localized bulk states are still well separated in
energy from the conducting edge states appearing between
E ~ 0.0 and 0.07¢ with simple straight-line level crossing.
With further increasing W to W = 2.8t slightly above W,
the edge states and bulk states mix together, and level
repulsion gaps show up, as indicated by the arrows in
Fig. 4(b), which signals the presence of backward scatter-
ing and the collapse of the bulk energy gap.

Topologically invariant Chern number matrix.—At this
stage, we have firmly established the connection between
the QSHE in the model Eq. (1) and the presence of edge
states within the bulk band gap. In the following, we
examine whether there exists a topological characteriza-
tion of the bulk states as in IQHE, which is responsible for
the existence of the edge states.

Generally, in diagonalizing the Hamiltonian Eq. (1)
one may introduce a generalized boundary condition
[5,17,18] for a 2D many-body wave function: ®(.. ., r, +
L;,..)= (..., r; ,...), where j = x, y, and the sys-
tem length vector L, = %al and L, = N,a,, with a,
and a, as two primitive vectors of the Bravais lat-
tice. The twisted boundary condition is represented by
0=6% <2m, where « =1 and | denotes the spin
index. Through a unitary V=
exp[—iY , Zia(i—f‘:xia + i—i yi.)]®, where the summation
runs over all electrons of both spins, ¥ becomes periodic
on a torus. One can then define the topological Chern
numbers as [3,18]
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FIG. 4. (a) Level crossing below W, at W = 2.2¢ in the energy
region 0.0-0.07z. (b) The avoided level crossing (pointed by
arrows) between edgelike states above W, at W = 2.8¢ with
changing 6,. Here, N = 240 X 120, Vg0, and Vj, are the same as
in Fig. 3(a) with W, = 2.4¢.
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where the area integration is over a unit cell 0 = 0, 05 =
27. With a, B =1,|, C*# form a 2 X 2 CNM [18].

The many-body wave function W(@) is necessarily a
smooth function of the boundary phase 6 = {6¢, 05 }
when the energy gap remains. One can then prove the exact
quantization of C*%# by strictly following the argument of
Thouless et al. [3]. Each topologically invariant matrix
element C*# should remain unchanged until the energy
gap collapses. Considering the simple case without the
Rashba coupling term (Vi = 0), the only nonzero matrix
elements are the diagonal ones: C*% = 7, with 7, =
—mn, =1 for Vgo >0, which change sign with Vgg.
While the total charge Chern number C, =3, BC""[’
(corresponding to the total charge Hall conductance of
the system) [18] cancels out, the total spin-related Chern
number is quantized to Cy. = >, BaC“’B = 2, which rep-
resents the spin-Hall response when a common electric
field for both spin components is imposed along the §
direction. In this spin decoupled limit, the quantized spin
Chern number Cj. is associated with the SHC by o,y =
Cy. = 2 in units of ;£

Now we turn on the Rashba coupling and numerically
determine Cj.. This can be done either by calculating each
C%P first or carrying out the integration in Eq. (2) for the
opposite boundary condition along the X direction (spin
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FIG. 5 (color online). Solid angle (); vs spin twist 6, and
momentum k,, which is meshed into Ny, = 120 X 120 points
for a pure system with N = 240 X 240 at Vgo = 0.1¢ and Vi =
0.3¢. The total Berry phase Zyjﬁ"“ Q; = 47, and thus Cy, = 2.

twist 0L = —0& = 0,) and the common one along the ¥
direction (0; = ﬁly = 6,) to directly obtain C.. We choose
the latter method in the following. The unit cell of the
boundary phases is divided into Ny, = 400 to 14400
mesh points such that the integration in Eq. (2) is replaced
by the sum of the solid angle };: Cy. = 3, ?—7; .Here, ; =
arg[ J{W; ¥, ), where i = 1-4 (with js = j;) denote
four mesh points at the jth square of mesh patches in the
6 space. Numerically it is verified that the computed Cy is
well converged and insensitive to mesh sizes. We find that
C,. always remains quantized at C,, = 2 before the band
gap collapses at a critical Rashba coupling, say, Vi =
0.33¢ if Vgq is fixed at 0.17. We note that with a finite Vp
the spin becomes nonconserved, but it does not change the
topological quantization as the latter is protected by the
bulk energy gap. However, the nonconservation of spin is
reflected in SHC, which becomes nonquantized as dis-
cussed before.

The total spin Chern number C. can be also expressed
as the sum of the Berry phase of each eigenstate below the
Fermi energy. Since along the y direction a common
boundary condition is imposed, which does not break the
translational invariance of the system along this direction,
one can calculate the contribution to C of the eigenstates
for a given momentum k, and formulate Cy as an area in-
tegral over k, and 6,. Interestingly, at a larger Vi = 0.30¢,
the energy gap is about to collapse, and correspondingly
the nonzero (); becomes quite localized and concentrated
at four points in the phase space (0, *k}) and (7, =£J), as
shown in Fig. 5, where k}; = 2{ (it appears that there are six
peaks simply because of the periodicity in 6,). As a matter
of fact, we find that each peak in Fig. 5 carries about half-
quantized topological charge by performing area integral
around the sharp peak, while the rest of the area almost has
no contribution to the Chern number Cg . With further
increasing Vg, these half-quantized topological charges
will mix and merge with the ones coming from the upper
energy band (with opposite signs), when the band gap
disappears and the two energy bands touch. For a pure

sample, a step jump of the C. from 2 to 0 at a critical
Rashba coupling V§ = 0.33t is observed, corresponding to
a quantum phase transition into a metallic state. The phase
boundary for the topological quantized C,. =2 QSHE
state has also been examined in the presence of disorder,
where we find that the number of edge channels N4, [see
Fig. 3(b)] has one-to-one correspondence to the spin Chern
number Cg., and thus we identify the CNM as the topo-
logical origin of the nontrivial QSHE.

To summarize, we have numerically studied the topo-
logical description of a band insulator characterized by a
spin Chern number Cy, = =2 and established its relation
with a pair of ideal conducting edge states within the bulk
band gap in an open system, which carry spin polarization
and can pump spins from one edge to the other to result in
QSHE. The spin Chern number C,. remains precisely
quantized until the band gap collapses at strong disorder
or Rashba coupling, which distinguishes between two
QSHE systems with opposite signs of SHC and thus further
classifies a QSHE system with a nontrivial Z, index [9].
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