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A microscopic, nonlocal response theory is developed to model the interaction of electromagnetic
radiation with inhomogeneous nanoscale clusters. The breakdown of classical continuum-field Mie theory
is demonstrated at a critical coarse-graining threshold, below which macroscopic plasmon resonances are
replaced by molecular excitations with suppressed spectral intensity.
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The prevalent classical model describing the interaction
of visible and infrared electromagnetic radiation with
nanoscale metallic clusters is based on Mie theory [1].
This local continuum-field model which employs empiri-
cal values of a bulk material’s linear optical response has
been used to describe plasmon resonances in nanoparticles
[2–4]. However, such a semiempirical continuum descrip-
tion necessarily breaks down beyond a certain level of
coarseness introduced by atomic length scales. Thus, it
cannot be used to describe the interface between quantum
and macroscopic regimes. Moreover, extensions of Mie
theory to inhomogeneous cluster shapes are commonly
restricted to low order harmonic expansions (e.g., elliptical
distortions) and so do not address the full realm of possible
structures. In addition, near-field applications, such as
surface enhanced Raman scattering [5], are most naturally
described using a real-space theory that includes the non-
local electronic response of inhomogeneous structures,
again beyond the scope of Mie theory.

Ignoring the limitations of Mie theory can lead to con-
clusions of limited validity and usefulness. For example, it
was recently argued [4] that resonances in the long wave-
length limit are exclusively controlled by the object’s
shape, but otherwise scale invariant, so that scaling of
nanoparticles would not alter their characteristic plasmon
frequencies. In particular, it was stated that an infinitely
long elliptic rod, whose surface in Cartesian coordinates is
defined by �x=a�2 � �y=b�2 � R2, has two geometric scal-
able plasmon resonances that depend only on the ratio
between semiaxis lengths a and b. In this work, we develop
a microscopic model that demonstrates the breakdown of
this concept at atomic scales, whereas for large cluster
sizes the classical predictions for the plasmon resonances
are reproduced. We then show how this approach is useful
in describing the coexistence of excitations of quantum and
classical character in inhomogeneous structures on the
nanoscale.

To capture the main single-particle and collective as-
pects of light-matter interaction in an inhomogeneous

nanoscale system, we adopt the well-established linear
response approximation [6]. Starting from the
Schrödinger equation for noninteracting electrons with
mass me and charge e moving in potential V�r� we have

 H�i�r� �
�
�

@
2

2me
r2 � V�r�

�
�i�r� � Ei�i�r�: (1)

Equation (1) is solved simultaneously with the Poisson
equation that determines the local potential due to the
spatial distribution of the positive background charges.
Using the jellium approximation, the resulting potential
is implicitly given by r2V�r� � 4e���r�, where the den-
sity of the positive background charge ��r� satisfies the
condition of neutrality inside the nanostructure so thatR
��r�dr � Nel, where Nel is the number of electrons.
Within linear response theory [7,8], the induced elec-

tron charge density due to an external field of frequency
! is given by �ind�r; !� �

R
��r; r0; !��tot�r0; !�dr0,

where the total self-consistent potential is determined
by�tot�r0; !� � �ext�r0; !� ��ind�r0; !�. Because the sig-
nificance of nonlocal effects for inhomogeneous sys-
tems, including spatial dispersion of the dielectric fun-
ction, is widely recognized [9,10], for an inhomogeneous
cluster of arbitrary shape, we use the nonlocal density-
density response function ��r; r0; !� that may be deter-
mined from a real-space representation [2]. Within the
random phase approximation [8] one finds ��r; r0; !� �P
i;j

f�Ei��f�Ej�
Ei�Ej�@!�i�

��i �r��i�r0���j �r
0��j�r�, where f�Ei� is

the Fermi filling factor and the small constant � describes
level broadening. Electron eigenenergies Ei and eigenfunc-
tions �i are obtained numerically using a 6th order real-
space discretization of the Schrödinger equation in three
dimensions with a starlike stencil on a simple cubic lattice.
Unless explicitly stated otherwise, zero Derichlet boundary
conditions are used to calculate the electron wave func-
tions in this Letter. The large scale sparse eigenproblem is
solved using ARPACK [11]. The induced potential �ind is
determined from the self-consistent integral equation

PRL 97, 036806 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
21 JULY 2006

0031-9007=06=97(3)=036806(4) 036806-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.97.036806


 

�ind�r; !� �
X
i;j

f�Ei� � f�Ej�

Ei � Ej � @!� i�

Z ��i �r
0��j�r0�
jr� r0j

dr0

�
Z

��j �r
00��tot�r0; !��i�r00�dr00; (2)

and the induced field is found via Eind�r; !� �
�r�ind�r; !�. For sufficiently small structures, when the
typical wavelength of the external radiation is larger than
the structure, retardation effects can be ignored. Note, that
the induced field is not necessarily collinear with the
applied external field Eext�r�.

The integral equation Eq. (2) is discretized on a real-
space mesh, using a simple cubic lattice with lattice con-
stant L. The natural energy scale E0 is defined by E0 �
@

2=�2meL2�. For example, in the case of GaAs 1D nano-
rods [12] with conduction band carrier density 1018 cm�3,
the discretization lattice length scale is L � 1:28 nm, the
density � � 1=480 in units of L�3, and the energy scale
E0 � 330 meV.

We illustrate the application of this approach to an
infinitely long elliptic rod illuminated by an external field.
The rod is aligned in the z direction and the electric field
polarization is along the (1, 1, 0) direction. For the wave
functions we assume periodic boundary conditions along
the z direction. To quantify the response of arbitrary ge-
ometries to the applied field, we calculate the energy of
the induced field, defined by Wind�!� � �1=2� �R
jEind�r; !�j2dr. In Fig. 1 logarithm of the energy of the

induced field [log10�Wind�] is displayed as a function of the
applied external field photon energy @! and the character-
istic system size R for the aspect ratio a:b � 1:1:3. For
sufficiently large rod sizes, one clearly observes two plas-
mon resonances, !� and !�, consistent with earlier pre-
dictions based on Mie theory [4]. Our method confirms

that these resonances occur at !� � !p�b=�a� b�	1=2

and !� � !p�a=�a� b�	
1=2, where !p is the bulk plas-

mon frequency !p �
�����������������������
4�e2�=me

p
. The gray scale in

Fig. 1 is on a logarithmic scale, demonstrating that the
spectral intensity for large rod sizes is orders of magnitude
greater compared to smaller rod sizes. Most importantly, it
is evident from this figure that the classical picture of two
well-defined resonances breaks down below a character-
istic system size. For sufficiently small rod sizes, the two
macroscopic resonances split into multilevel molecular
excitations, with the overall spectral weight shifting to-
wards lower energies. For the chosen parameters, this
transition occurs at Rc 
 6:5L. Below Rc, the spectral
intensity of the energy levels is reduced because fewer
electrons participate in the individual resonances. The
physics determining the value of Rc may be illustrated
considering an infinitely long cylindrical rod of radius R
and electron density �. In the classical regime, the ob-
served collective oscillations are only weakly damped,
indicating that they are well separated from the quasicon-
tinuum of single-particle excitations. This leads to the
condition !pR=vF � 1, stating that the plasmon phase
velocity is greater than the Fermi velocity vF of the elec-
trons [13]. For r < R the electrons are trapped in a har-
monic potential due to the uniform positive background

[14] and the characteristic collective frequency is !p ������������������������������
4�e2�=�2me�

p
. Estimating the Fermi velocity using a

bulk value vF � �3�2��1=3
@=me one obtains R� Rc �

�1=631=3��
2
p @

em1=2
e �1=6


 3:4L for an electron density � �

�1=480�L�3, which is in reasonable, but only approximate,
agreement with the calculated threshold Rc 
 6:5L shown
in Fig. 1.

For system sizes below Rc the dominant excitations are
observed to shift towards lower energies as the positive
background potential becomes increasingly anharmonic.
The harmonicity criterion for excitations can be expressed
as �0=R � 1, where �0 � �

@

me!p
�1=2 is the classical turning

point for an electron in the ground state of the harmonic
potential. This is equivalent to the condition R 
 Rc �
� @

2

2me�e2�
1=4, yielding R 
 3L.

The nature of the excitations changes as the character-
istic size R crosses the quantum threshold Rc. In Fig. 2, we
show logarithm of the calculated energy of the induced
field [log10�Wind�] as a function of external field frequency.
As shown in Fig. 2(a), for relatively large rod sizes, the two
distinct plasmon resonances labeled !� and !� corre-
spond to two orthogonal bipolar charge distributions, as
indicated in the inset. The spatial orientations of these
induced resonances are aligned with the semimajor and
semiminor axes, and do not depend on the direction of the
incident field. In contrast, for system sizes less than Rc
[Fig. 2(b)], the excitation spectrum consists of several
lower-intensity modes, dominated by a low-frequency
resonance. However, the spatial characteristics of these

FIG. 1. Logarithm of the energy of the induced electric field
[log10�Wind�] (see text) in an elliptic metallic rod due to applied
external field Eext along the (1, 1, 0) direction as a function of
face surface size R and photon energy @! of the external field in
units of E0. Aspect ratio (semiminor to semimajor axis) a:b �
1:1:3. Cross section of the elliptical rod and the vector of the
applied external field Eext are depicted in the lower right corner.
Temperature T � 0 K, carrier density � � �1=480�L�3, and
� � 10�3E0. All real-space calculations are performed on a
mesh of simple cubic geometry with lattice constant L.
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modes are different from the classical limit; i.e., they are
aligned with the incident field, indicating that Mie theory
breaks down in the quantum regime.

An advantage of the self-consistent nonlocal response
theory described in this work is that it extends naturally to
inhomogeneous structures with nanoscale and atomically
sharp edges and corners. This is of great practical interest
to nanophotonic applications since such features are com-
monly associated with substantial local field enhancements
[5]. However, the intuition driving such expectations is
usually derived from classical continuum-field theory
which may not be applicable in this regime. When inves-
tigating structures at the microscopic level one needs to
account quantitatively for changes in the response spec-
trum. One would also like to describe the breakdown of
the continuum picture and quantum-mechanical discretiza-
tion effects which may ultimately lead to new and inter-
esting functionalities that are accessible by nanoscale
engineering.

To explore this we consider a representative asymmetric
nanostructured system of material volume Vmat � 5516L3,
consisting of a conjoined sphere and rectangular bar
[Fig. 3(a)] whose response strongly depends on the carrier
concentration [Fig. 3(b)]. Plots of induced charge distribu-
tions in response to an external electric field are shown for
different carrier concentrations and frequencies of the
incident radiation.

ForNel � 100 in the low-frequency limit [Fig. 3(c)], this
leads to a dipolelike anisotropic response for which the
induced field is not collinear to the external field Eext

(indicated by the arrow). Note, that in this case the induced
charge is localized within the boundaries of the nanostruc-
ture, and follows the nanostructure’s physical bounds given
by the positive charge distribution, in agreement with
expectations from classical field theory. At this relatively
high carrier concentration and at a high external field
frequency of ! � 0:415E0, one observes a complex local
enhancement of the induced charge density [Fig. 3(d)]. For
the low carrier concentration (Nel � 5), shown in Fig. 3(e)

and 3(f) the induced charge density arises from excitation
of low energy eigenstates and the overall response is
weaker. Note, the induced charge is not localized within
the boundaries of the nanostructure. Varying the carrier
concentration hence acts as a ‘‘switch’’ that can activate

FIG. 3 (color online). (a) Illustration of three-dimensional
conjoined sphere and rectangular bar. (b) Logarithm of the
induced field energy in the structure for Nel � 100 (solid line)
and Nel � 5 (dotted line) as a function of the external field
frequency. The material volume is Vmat � 5516L3. The arrows
in the figure show the frequencies chosen for results of calcu-
lations shown in (d) and (f). Induced charge density for a
nanoscale asymmetric structure for the indicated charge den-
sities and frequencies of the external field. Temperature T � 0 K
and � � 10�3E0. (c) Nel � 100, @! � 0, the direction of the
external field is indicated by the arrow; (d) Nel � 100, @! �
0:415E0. (e) Nel � 5, @! � 0. (f) Nel � 5, @! � 0:085E0.

FIG. 2 (color online). (a) Logarithm of the energy of the induced electric field [log10�Wind�] in an elliptic rod of size R � 11L with
aspect ratio a:b � 1:1:3 as a function of photon energy @! of the external field in units of E0. Carrier density � � �1=480�L�3 and
� � 10�3E0. The direction of the external field is indicated by the arrow. Inset: induced charge density at the resonant frequencies !�
and !�. The boundary of the rod is shown using the solid line, and the dotted line shows the set of classical turning points,
corresponding to the positive background potential. (b) Same as (a), but for size R � 3L.
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different resonant regions in a broken-symmetry atomic-
scale structure.

At higher frequencies, the system response can be even
more complex. For example, in the case of low carrier
concentrations and resonance frequency ! � 0:085E0,
the induced dipole field is rotated with respect to the static
limit [Fig. 3(f)]. Hence, by tuning the frequency of the
external field, discrete quantum states within anisotropic
nanostructures can either be accessed or avoided. This
control exposes various quantum functionalities that are
beyond conventional Mie theory.

As an example, let us consider the induced electric field
at the interface between a sharp tip and a flat surface
illuminated by plane-wave radiation incident in the z di-
rection [Fig. 4(a)]. The total material volume of the system
is Vmat � 33404L3.

In the static limit, a moderate enhancement of field
intensity is found in close proximity to the tip. Results
of calculating logarithm of the induced field intensity
(log10�jEind�r�j2�) are shown in Fig. 4(c). While most of
the induced charge density accumulates at the surface,
there is considerable penetration into the bulk. In contrast,
when the same structure is illuminated at resonance, the
induced plasmonic response is much more intense than the
low-frequency limit. Here, the induced field intensity in-
creases by 2 orders of magnitude, while the spatial disper-
sion of the ‘‘hot spot’’, as measured by full width half
maximum, remains approximately the same [see Fig. 4(d)].

This demonstrates that custom-designed atomic-scale tip
structures may be used to control the near field and fully
quantum-mechanical modeling can quantitatively account
for local enhancements, as well as screening and focusing
effects.

In summary, a nonlocal response theory describing the
interaction of electromagnetic radiation with inhomogene-
ous nanoscale structures has been developed and imple-
mented. This approach may be used to describe metals and
semiconductors in the metallic regime. For simple geome-
tries, semiempirical continuum-field Mie theory is found to
break down beyond a critical coarseness. At this level of
coarse graining, the response is no longer exclusively
determined by particle shape. In more complex inhomoge-
neous geometries, excitations of quantum and classical
character can coexist. For objects with nanoscale sharp
features, our real-space response theory uncovers new
functionalities, such as local resonances that are activated
by tuning the carrier concentration or the frequency of the
incident field.
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FIG. 4 (color online). (a) Three-dimensional image of a struc-
ture consisting of a sharp tip and two parallel flat plates of
material volume Vmat � 33404L3 containing Nel � 207 elec-
trons. The incident electric field is along the (0, 0, 1) direction,
temperature T � 0 K and � � 10�3E0. (b) Logarithm of the
induced electric field energy in the structure as a function of the
field frequency, the arrow shows the frequency chosen for results
of calculations shown in (d). (c) Logarithm of the intensity of the
induced electric field [log10�jEind�r�j2�] in static limit, @! � 0.
(d) At resonance, @! � 0:135E0.
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